PyTorch 的 10 条内部用法

欢迎阅读这份有关 PyTorch 原理的简明指南^[1]^。无论您是初学者还是有一定经验,了解这些原则都可以让您的旅程更加顺利。让我们开始吧!

1. 张量:构建模块

PyTorch 中的张量是多维数组。它们与 NumPy 的 ndarray 类似,但可以在 GPU 上运行。

import torch

# Create a 2x3 tensor
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(tensor)

2. 动态计算图

PyTorch 使用动态计算图,这意味着该图是在执行操作时即时构建的。这为在运行时修改图形提供了灵活性。

# Define two tensors
a = torch.tensor([2.], requires_grad=True)
b = torch.tensor([3.], requires_grad=True)

# Compute result
c = a * b
c.backward()

# Gradients
print(a.grad)  # Gradient w.r.t a

3.GPU加速

PyTorch 允许在 CPU 和 GPU 之间轻松切换。利用 .to(device) 获得最佳性能。

device = "cuda" if torch.cuda.is_available() else "cpu"
tensor = tensor.to(device)

4. Autograd:自动微分

PyTorch 的 autograd 为张量上的所有操作提供自动微分。设置 require_grad=True 来跟踪计算。

x = torch.tensor([2.], requires_grad=True)
y = x**2
y.backward()
print(x.grad)  # Gradient of y w.r.t x

5. 带有 nn.Module 的模块化神经网络

PyTorch 提供 nn.Module 类来定义神经网络架构。通过子类化创建自定义层。

import torch.nn as nn

class SimpleNN(nn.Module):

    def __init__(self):
        super().__init__()
        self.fc = nn.Linear(1, 1)
        
    def forward(self, x):
        return self.fc(x)

6. 预定义层和损失函数

PyTorch 在 nn 模块中提供了各种预定义层、损失函数和优化算法。

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

7. 数据集和DataLoader

为了高效的数据处理和批处理,PyTorch 提供了 Dataset 和 DataLoader 类。

from torch.utils.data import Dataset, DataLoader

class CustomDataset(Dataset):
    # ... (methods to define)
    
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)

8.模型训练循环

通常,PyTorch 中的训练遵循以下模式:前向传递、计算损失、后向传递和参数更新。

for epoch in range(epochs):
    for data, target in data_loader:
        optimizer.zero_grad()
        output = model(data)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()

9. 模型序列化

使用 torch.save() 和 torch.load() 保存和加载模型。

# Save
torch.save(model.state_dict(), 'model_weights.pth')

# Load
model.load_state_dict(torch.load('model_weights.pth'))

10. Eager Execution and JIT

虽然 PyTorch 默认情况下以 eager 模式运行,但它为生产就绪模型提供即时 (JIT) 编译。

scripted_model = torch.jit.script(model)
scripted_model.save("model_jit.pt")

Reference

[1]

Source: https://medium.com/@kasperjuunge/10-principles-of-pytorch-bbe4bf0c42cd

本文由mdnice多平台发布

相关推荐
HyperAI超神经23 分钟前
未来具身智能的触觉革命!TactEdge传感器让机器人具备精细触觉感知,实现织物缺陷检测、灵巧操作控制
人工智能·深度学习·机器人·触觉传感器·中国地质大学·机器人智能感知·具身触觉
请站在我身后1 小时前
复现Qwen-Audio 千问
人工智能·深度学习·语言模型·语音识别
GISer_Jing3 小时前
神经网络初学总结(一)
人工智能·深度学习·神经网络
数据分析能量站4 小时前
神经网络-AlexNet
人工智能·深度学习·神经网络
Ven%4 小时前
如何修改pip全局缓存位置和全局安装包存放路径
人工智能·python·深度学习·缓存·自然语言处理·pip
YangJZ_ByteMaster5 小时前
EndtoEnd Object Detection with Transformers
人工智能·深度学习·目标检测·计算机视觉
volcanical6 小时前
Bert各种变体——RoBERTA/ALBERT/DistillBert
人工智能·深度学习·bert
知来者逆6 小时前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型
跟德姆(dom)一起学AI6 小时前
0基础跟德姆(dom)一起学AI 自然语言处理05-文本特征处理
人工智能·python·深度学习·自然语言处理
云空7 小时前
《解锁分类神经网络预训练模型的奇妙世界》
人工智能·深度学习·神经网络