Windows11环境下配置深度学习环境(Pytorch)

目录

    • [1. 下载安装Miniconda](#1. 下载安装Miniconda)
    • [2. 新建Python3.9虚拟环境](#2. 新建Python3.9虚拟环境)
    • [3. 下载英伟达驱动](#3. 下载英伟达驱动)
    • [4. 安装CUDA版Pytorch](#4. 安装CUDA版Pytorch)
    • [5. CPU版本pytorch安装](#5. CPU版本pytorch安装)

1. 下载安装Miniconda

  1. 下载安装包:镜像文件地址
  2. 将Miniconda相关路径添加至系统变量的路径中。

  3. 打开Anaconda Powershell Prompt,输入conda --version


2. 新建Python3.9虚拟环境

新建虚拟环境命令: conda create -n conda_name python=x.x(带python版本的)

新建python39环境:conda create -n python39 python=3.9

进入python39环境:conda activate python39

添加清华镜像网站到Anaconda:

bash 复制代码
conda config --add channels http://mirror.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels http://mirror.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

如果需要 jupyter notebook可以使用conda或者pip命令进行安装:

bash 复制代码
pip install jupyter notebook

在当前目录下输入 jupyter notebook即可打开。

3. 下载英伟达驱动

  1. 下载nvidia驱动软件:官网下载,登录,下载驱动。(判断自己的电脑是否有英伟达的显卡,没有显卡不需要安装驱动。)
  2. windows+R,输入cmd,打开命令行,输入nvidia-smi,查看显卡驱动信息。

    这里的CUDA version:12.3代表Cuda driver version是12.3,是与显卡的驱动相关的。

4. 安装CUDA版Pytorch

判断自己的电脑是否有英伟达的显卡,没有显卡不需要安装CUDA。

  1. 确定显卡算力
  • 显卡由 GPU、显存等组成,大部分情况下我们所说的 GPU 就等同于显卡,但是实际情况是 GPU 是显示卡的"心脏"、核心零部件、核心组成部分。GPU 本身并不能单独工作,只有配合上附属电路和接口才能工作,这时候,它就变成了显卡;

  • 显卡算力 是指显卡处理信息的能力。

    找到显卡对应算力:算力查找

  • CUDA Runtime 是以 CUDA Driver 为基准开发的运行时库;

  • CUDA Runtime Version 是指 CUDA 运行时的版本,也就是这一部分需要确定的 CUDA 版本。

    CUDA Driver Version 和 CUDA Runtime Version 要充分发挥显卡的算力,此外,CUDA Driver Version 还要满足 CUDA Runtime Version 的某些新功能,所以三者之间的关系需要满足:"显卡算力对应的 CUDA 版本≤CUDA Runtime Version≤CUDA Driver Version"。

  1. pytorch官网选择你要安装的版本信息,选择pip或者conda安装方式,然后下面会显示你需要安装的安装命令。

    复制代码到powershell,注意要删除-c pytorch(不删除默认使用官网网站地址下载,删除之后下载要快一些,网速好也可以不删除):
bash 复制代码
#原本
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
#删除之后
conda install pytorch torchvision torchaudio pytorch-cuda=12.1  -c nvidia
  1. 查看是否安装成功:
python 复制代码
import torch
print(torch.__version__)

5. CPU版本pytorch安装

  1. pytorch官网选择你要安装的版本信息,选择pip或者conda安装方式,选择CPU版本,然后下面会显示你需要安装的安装命令。
  2. 复制代码到powershell,注意要删除-c pytorch(不删除默认使用官网网站地址下载,删除之后下载要快一些,网速好也可以不删除):
bash 复制代码
#原本:
conda install pytorch torchvision torchaudio cpuonly -c pytorch
#删除之后
conda install pytorch torchvision torchaudio cpuonly -c pytorch
  1. 查看是否安装成功:
python 复制代码
import torch
print(torch.__version__)
相关推荐
ggabb5 分钟前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
_XU11 分钟前
AI工具如何重塑我的开发日常
前端·人工智能·深度学习
Blossom.1181 小时前
Prompt工程与思维链优化实战:从零构建动态Few-Shot与CoT推理引擎
人工智能·分布式·python·智能手机·django·prompt·边缘计算
zxsz_com_cn2 小时前
设备预测性维护典型案例:中讯烛龙赋能高端制造降本增效
人工智能
人工智能培训2 小时前
图神经网络初探(1)
人工智能·深度学习·知识图谱·群体智能·智能体
love530love3 小时前
Windows 11 下 Z-Image-Turbo 完整部署与 Flash Attention 2.8.3 本地编译复盘
人工智能·windows·python·aigc·flash-attn·z-image·cuda加速
雪下的新火3 小时前
AI工具-Hyper3D
人工智能·aigc·blender·ai工具·笔记分享
Das13 小时前
【机器学习】01_模型选择与评估
人工智能·算法·机器学习
墨染天姬3 小时前
【AI】AI时代,模组厂商如何建立自己的AI护城河?
人工智能