Canny边缘检测算法

借鉴:知乎

Canny算子目标是找到一个最优的边缘,其最优边缘定义:

  • 好的检测:算法能够尽可能多的标识出图像的实际边缘
  • 好的定位:标识出的边缘要与实际图像中的实际边缘尽可能接近
  • 最小响应:图像中的边缘只能标识一次,并且可能存在的图像噪声不应该标识为边缘

具体步骤:
(1)高斯滤波

高斯滤波是目前最为流行的去噪滤波算法,其原理为根据待滤波的像素点及其领域点的灰度值按照高斯公式生成的参数规则进行加权平均,这样可以有效滤去理想图像中叠加的高频噪声。

其实高斯滤波器很像一个金字塔结构,其滤波器的值大小可以理解为权重,值越大对应的像素点权重越大,分量也就越大,因此从高斯滤波器可以看出对应当前像素点,距离越远权重越小,对灰度值的贡献也就越小。
(2)计算梯度图像和角度图像

计算梯度图像就是用各种边缘检测算子进行梯度的检测,Canny是使用高斯滤波器进行梯度计算 得到的滤波器,得到的也类似于Sobel算子,及距离中心点越近的像素点权重越大。
(3)对梯度图像进行非极大值抑制

从上一步得到的梯度图像存在边缘粗宽、弱边缘干扰等众多问题,可以通过非极大值抑制来寻找像素点局部最大值,将非极大值所对应的灰度值置0,这样可以剔除一大部分非边缘的像素点。
(4)使用双阈值进行边缘连接

经过以上三步得到的边缘质量已经很高,但还是存在很多伪边缘,因此Canny算法中所采用的算法是双阈值法,具体思路为选取两个阈值,将小于低阈值的点认为是假边缘置0,将大于高阈值的点认为是强边缘置1,介于中间的像素点需进一步的检查。

相关推荐
神经星星1 分钟前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星1 分钟前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言
SweetCode7 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
程序员Linc19 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
ゞ 正在缓冲99%…20 分钟前
leetcode76.最小覆盖子串
java·算法·leetcode·字符串·双指针·滑动窗口
xuanjiong21 分钟前
纯个人整理,蓝桥杯使用的算法模板day2(0-1背包问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个
算法·蓝桥杯·动态规划
xcLeigh27 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能31 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_7978820940 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
惊鸿.Jh40 分钟前
【滑动窗口】3254. 长度为 K 的子数组的能量值 I
数据结构·算法·leetcode