每天五分钟计算机视觉:网络中的网络(NiN)

本文重点

前面的课程中我们学习了众多的经典网络模型,比如LeNet、AlexNet、VGG等等,这些网络模型都有共同的特点。

它们的特点是:先由卷积层构成的模块充分提取空间特征,然后再由全连接层构成的模块来输出分类结果。也就是说它们都是下面的这种效果,先卷积后全连接:

它们的不同在于对卷积层中卷积核的大小以及卷积层的层数进行了改变,其它的变化不大。而本文我们将学习另外一个思想的卷积神经网络,这个卷积神经网络就是NiN,它的思想是:串联多个由卷积层核全连接层构成的小网络来构成一个深层网络。

1*1卷积核的应用

卷积层的输入和输出的维度信息通常是(样本、通道、长、宽)。而全连接层的输入和输出通常是二维数组(样本,特征)。

所以维度不一样,就无法让全连接层之后连上卷积层,这里我们可以使用1*1的卷积层,前面我们学习过1*1的卷积层可以看成是全连接层,使用1*1的卷积层使得空间信息自然的传递到后面的层中去。

NiN模型

不用怎么来介绍这两个模型的不同,只需要看这个图就可以看出二者的不同。

AlexNet和NiN

NiN和AlexNet比较相似,它是在AlexNet之后被提出来的,这里我们对二者做一个简单的区别:

NiN去掉了AlexNet最后的3个全连接层,它使用了输出通道数与分类类别数相等的NiN块,然后使用全局平均池化层对每个通道中的所有元素求平均并直接用于分类。这样可以有效的减少模型的参数尺寸,从而缓解过拟合问题,当然坏处就是会增加模型的训练时间。

相关推荐
KG_LLM图谱增强大模型1 小时前
Vgent:基于图的多模态检索推理增强生成框架GraphRAG,突破长视频理解瓶颈
大数据·人工智能·算法·大模型·知识图谱·多模态
AKAMAI1 小时前
企业如何平衡AI创新与风险
人工智能·云原生·云计算
小糖学代码2 小时前
网络:4.1加餐 - 进程间关系与守护进程
linux·网络
xinxinhenmeihao2 小时前
隧道代理和住宅IP有何不同》各有什么优缺点?
服务器·网络·tcp/ip
TDengine (老段)2 小时前
优化 TDengine IDMP 面板编辑的几种方法
人工智能·物联网·ai·时序数据库·tdengine·涛思数据
数据的世界013 小时前
Visual Studio 2026 正式发布:AI 原生 IDE 与性能革命的双向突破
ide·人工智能·visual studio
小米里的大麦3 小时前
050 传输层 —— UDP
网络·网络协议·udp
adnyting4 小时前
【Linux日新月异(六)】CentOS 7网络命令深度解析:从传统到现代网络管理
linux·网络·centos
shayudiandian4 小时前
深度学习中的激活函数全解析:该选哪一个?
人工智能·深度学习