论文阅读——Painter

Images Speak in Images: A Generalist Painter for In-Context Visual Learning

GitHub - baaivision/Painter: Painter & SegGPT Series: Vision Foundation Models from BAAI

可以做什么:

输入和输出都是图片,并且不同人物输出的图片格式相同,输入输出图片格式都是H×W ×3,具体大概是原始label像素值重新定义在了三个通道上。语义分割部分如下:

原文:

训练时,输入是同一任务的两对图片concatenation,每对图片是原始图片和相应的任务输出图片,即GT。对于第二张图片即输出图片GT做了随机掩码,比例75%,重建遮挡的这部分,这部分训练时用一个可学习的向量代替被遮挡的patch。然后送入Vit-L,24blosks。从这些blocks中随机选4个特征图concatenation,送入一个三层的head(1x1卷积,3x3卷积,1个线性层)把每个patch还原为原来大小,16x16x3。

由于输入两对图片concatenation,所以计算量大,所以作者降低计算量的办法是输入图片和输出图片分别平行的送入模型,然后三个blocks后相对应的patch相加。节省一半计算开销。

损失函数smooth-l1

任务提示,作者给了两种基线办法:从训练集里面选好的,和生成一个可学习的。

其他实验结果:

相关推荐
apocalypsx18 分钟前
深度学习-深度卷积神经网络AlexNet
人工智能·深度学习·cnn
leafff12334 分钟前
一文了解LLM应用架构:从Prompt到Multi-Agent
人工智能·架构·prompt
无风听海1 小时前
神经网络之特征值与特征向量
人工智能·深度学习·神经网络
艾莉丝努力练剑1 小时前
【C++:红黑树】深入理解红黑树的平衡之道:从原理、变色、旋转到完整实现代码
大数据·开发语言·c++·人工智能·红黑树
九章云极AladdinEdu1 小时前
论文分享 | BARD-GS:基于高斯泼溅的模糊感知动态场景重建
人工智能·新视角合成·动态场景重建·运动模糊处理·3d高斯泼溅·模糊感知建模·真实世界数据集
希露菲叶特格雷拉特1 小时前
PyTorch深度学习笔记(二十)(模型验证测试)
人工智能·pytorch·笔记
NewsMash1 小时前
PyTorch之父发离职长文,告别Meta
人工智能·pytorch·python
IT_陈寒1 小时前
Python 3.12新特性实测:10个让你的代码提速30%的隐藏技巧 🚀
前端·人工智能·后端
Ztop2 小时前
GPT-5.1 已确认!OpenAI下一步推理升级?对决 Gemini 3 在即
人工智能·gpt·chatgpt
qq_436962182 小时前
奥威BI:打破数据分析的桎梏,让决策更自由
人工智能·数据挖掘·数据分析