论文阅读——Painter

Images Speak in Images: A Generalist Painter for In-Context Visual Learning

GitHub - baaivision/Painter: Painter & SegGPT Series: Vision Foundation Models from BAAI

可以做什么:

输入和输出都是图片,并且不同人物输出的图片格式相同,输入输出图片格式都是H×W ×3,具体大概是原始label像素值重新定义在了三个通道上。语义分割部分如下:

原文:

训练时,输入是同一任务的两对图片concatenation,每对图片是原始图片和相应的任务输出图片,即GT。对于第二张图片即输出图片GT做了随机掩码,比例75%,重建遮挡的这部分,这部分训练时用一个可学习的向量代替被遮挡的patch。然后送入Vit-L,24blosks。从这些blocks中随机选4个特征图concatenation,送入一个三层的head(1x1卷积,3x3卷积,1个线性层)把每个patch还原为原来大小,16x16x3。

由于输入两对图片concatenation,所以计算量大,所以作者降低计算量的办法是输入图片和输出图片分别平行的送入模型,然后三个blocks后相对应的patch相加。节省一半计算开销。

损失函数smooth-l1

任务提示,作者给了两种基线办法:从训练集里面选好的,和生成一个可学习的。

其他实验结果:

相关推荐
‿hhh4 分钟前
微服务智慧交通管理平台 - 项目实现(结合Qoder搭建)
java·人工智能·机器学习·微服务·架构·需求分析·规格说明书
ysdysyn4 分钟前
AI:制造的“智慧预言家”——预测未来、优化现在的智能大脑*
人工智能·程序人生·ai·数据分析·制造
ggabb5 分钟前
航空发动机:材料与精密制造的百年突围——从GE双王牌看工业皇冠上的明珠如何炼成
人工智能
喝拿铁写前端6 小时前
别再让 AI 直接写页面了:一种更稳的中后台开发方式
前端·人工智能
tongxianchao7 小时前
UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer
人工智能·cnn·transformer
塔能物联运维8 小时前
设备边缘计算任务调度卡顿 后来动态分配CPU/GPU资源
人工智能·边缘计算
过期的秋刀鱼!8 小时前
人工智能-深度学习-线性回归
人工智能·深度学习
木头左8 小时前
高级LSTM架构在量化交易中的特殊入参要求与实现
人工智能·rnn·lstm
IE068 小时前
深度学习系列84:使用kokoros生成tts语音
人工智能·深度学习
欧阳天羲8 小时前
#前端开发未来3年(2026-2028)核心趋势与AI应用实践
人工智能·前端框架