论文阅读——Painter

Images Speak in Images: A Generalist Painter for In-Context Visual Learning

GitHub - baaivision/Painter: Painter & SegGPT Series: Vision Foundation Models from BAAI

可以做什么:

输入和输出都是图片,并且不同人物输出的图片格式相同,输入输出图片格式都是H×W ×3,具体大概是原始label像素值重新定义在了三个通道上。语义分割部分如下:

原文:

训练时,输入是同一任务的两对图片concatenation,每对图片是原始图片和相应的任务输出图片,即GT。对于第二张图片即输出图片GT做了随机掩码,比例75%,重建遮挡的这部分,这部分训练时用一个可学习的向量代替被遮挡的patch。然后送入Vit-L,24blosks。从这些blocks中随机选4个特征图concatenation,送入一个三层的head(1x1卷积,3x3卷积,1个线性层)把每个patch还原为原来大小,16x16x3。

由于输入两对图片concatenation,所以计算量大,所以作者降低计算量的办法是输入图片和输出图片分别平行的送入模型,然后三个blocks后相对应的patch相加。节省一半计算开销。

损失函数smooth-l1

任务提示,作者给了两种基线办法:从训练集里面选好的,和生成一个可学习的。

其他实验结果:

相关推荐
宇擎智脑科技7 分钟前
Crawl4AI:面向大语言模型的开源智能网页爬虫框架深度解析
人工智能·爬虫·语言模型
冰西瓜6007 分钟前
深度学习的数学原理(六)—— 梯度消失与激活函数
人工智能·深度学习
青铜弟弟10 分钟前
LSTM与Transformer
人工智能·lstm·transformer
紫微AI12 分钟前
深度综述:Effective Harnesses for Long-Running Agents
人工智能·claude·anthropic
袁气满满~_~15 分钟前
深度学习笔记四
人工智能·笔记·深度学习
乌萨奇53715 分钟前
【2025考研复试】深度学习扩展知识:从ViT到多模态,以及简历项目挖掘策略(第11章复盘)
人工智能·深度学习·考研·计算机视觉·nlp·多模态
nimadan1219 分钟前
**免费专业的小说创作软件2025推荐,解锁高效写作新体验*
人工智能·python
七夜zippoe23 分钟前
PyTorch深度革命:从自动微分到企业级应用
人工智能·pytorch·python
XLYcmy27 分钟前
智能体大赛 技术架构 核心驱动层
人工智能·算法·机器学习·llm·prompt·agent·qwen
Lun3866buzha30 分钟前
法兰盘表面缺陷识别与分类:基于YOLO13-C3k2-RFAConv的智能检测系统完整实现
人工智能·分类·数据挖掘