butterfly蝴蝶分类

一、分类原因

由于植物分类所使用的数据集存在一定问题,修改起来比较麻烦,本次采用kaggle的ButterflyMothsImageClassification数据集,对100这种蝴蝶进行分类。

二、100中蝴蝶类别

'ADONIS','AFRICAN GIANT SWALLOWTAIL','AMERICAN SNOOT','AN 88','APPOLLO','ARCIGERA FLOWER MOTH','ATALA','ATLAS MOTH','BANDED ORANGE HELICONIAN','BANDED PEACOCK','BANDED TIGER MOTH','BECKERS WHITE','BIRD CHERRY ERMINE MOTH','BLACK HAIRSTREAK','BLUE MORPHO','BLUE SPOTTED CROW','BROOKES BIRDWING','BROWN ARGUS','BROWN SIPROETA','CABBAGE WHITE','CAIRNS BIRDWING','CHALK HILL BLUE','CHECQUERED SKIPPER','CHESTNUT','CINNABAR MOTH','CLEARWING MOTH','CLEOPATRA','CLODIUS PARNASSIAN','CLOUDED SULPHUR','COMET MOTH','COMMON BANDED AWL','COMMON WOOD-NYMPH','COPPER TAIL','CRECENT','CRIMSON PATCH','DANAID EGGFLY','EASTERN COMA','EASTERN DAPPLE WHITE','EASTERN PINE ELFIN','ELBOWED PIERROT','EMPEROR GUM MOTH','GARDEN TIGER MOTH','GIANT LEOPARD MOTH','GLITTERING SAPPHIRE','GOLD BANDED','GREAT EGGFLY','GREAT JAY','GREEN CELLED CATTLEHEART','GREEN HAIRSTREAK','GREY HAIRSTREAK','HERCULES MOTH','HUMMING BIRD HAWK MOTH','INDRA SWALLOW','IO MOTH','Iphiclus sister','JULIA','LARGE MARBLE','LUNA MOTH','MADAGASCAN SUNSET MOTH','MALACHITE','MANGROVE SKIPPER','MESTRA','METALMARK','MILBERTS TORTOISESHELL','MONARCH','MOURNING CLOAK','OLEANDER HAWK MOTH','ORANGE OAKLEAF','ORANGE TIP','ORCHARD SWALLOW','PAINTED LADY','PAPER KITE','PEACOCK','PINE WHITE','PIPEVINE SWALLOW','POLYPHEMUS MOTH','POPINJAY','PURPLE HAIRSTREAK','PURPLISH COPPER','QUESTION MARK','RED ADMIRAL','RED CRACKER','RED POSTMAN','RED SPOTTED PURPLE','ROSY MAPLE MOTH','SCARCE SWALLOW','SILVER SPOT SKIPPER','SIXSPOT BURNET MOTH','SLEEPY ORANGE','SOOTYWING','SOUTHERN DOGFACE','STRAITED QUEEN','TROPICAL LEAFWING','TWO BARRED FLASHER','ULYSES','VICEROY','WHITE LINED SPHINX MOTH','WOOD SATYR','YELLOW SWALLOW TAIL','ZEBRA LONG WING'

三、配置文件

python 复制代码
auto_scale_lr = dict(base_batch_size=256)
data_preprocessor = dict(
    mean=[
        123.675,
        116.28,
        103.53,
    ],
    num_classes=100,
    std=[
        58.395,
        57.12,
        57.375,
    ],
    to_rgb=True)
dataset_type = 'ImageNet'
data_root = 'data/ButterflyMothsImageClassification'
default_hooks = dict(
    checkpoint=dict(interval=1, type='CheckpointHook', max_keep_ckpts=2, save_best="auto"),
    logger=dict(interval=100, type='LoggerHook'),
    param_scheduler=dict(type='ParamSchedulerHook'),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    timer=dict(type='IterTimerHook'),
    visualization=dict(enable=False, type='VisualizationHook'))
default_scope = 'mmpretrain'
env_cfg = dict(
    cudnn_benchmark=False,
    dist_cfg=dict(backend='nccl'),
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
launcher = 'none'
load_from = './work_dirs/resnet50_8xb32-coslr_in1k/resnet50_8xb32_in1k_20210831-ea4938fc.pth'
log_level = 'INFO'
model = dict(
    backbone=dict(
        depth=50,
        num_stages=4,
        out_indices=(3,),
        style='pytorch',
        type='ResNet'),
    head=dict(
        in_channels=2048,
        # loss=dict(loss_weight=1.0, type='CrossEntropyLoss'),
        loss=dict(
                    type='LabelSmoothLoss',
                    label_smooth_val=0.1,
                    num_classes=100,
                    reduction='mean',
                    loss_weight=1.0),
        num_classes=100,
        topk=(
            1,
            5,
        ),
        type='LinearClsHead'),
    data_preprocessor=data_preprocessor,
    neck=dict(type='GlobalAveragePooling'),
    type='ImageClassifier')
train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1)
optim_wrapper = dict(
    optimizer=dict(lr=0.1, momentum=0.9, type='SGD', weight_decay=0.0001))
param_scheduler = dict(
    T_max=260, begin=20, by_epoch=True, end=300, type='CosineAnnealingLR')
randomness = dict(deterministic=False, seed=None)
resume = False
test_cfg = dict()
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(edge='short', scale=256, type='ResizeEdge'),
    dict(crop_size=224, type='CenterCrop'),
    dict(type='PackInputs'),
]
test_dataloader = dict(
    batch_size=32,
    collate_fn=dict(type='default_collate'),
    dataset=dict(
        data_root=data_root,
        pipeline=test_pipeline,
        split='test',
        ann_file='test.txt',
        type=dataset_type),
    num_workers=1,
    persistent_workers=True,
    pin_memory=True,
    sampler=dict(shuffle=False, type='DefaultSampler'))
test_evaluator = dict(
    topk=(
        1,
        5,
    ), type='Accuracy')

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(scale=224, type='RandomResizedCrop'),
    dict(direction='horizontal', prob=0.5, type='RandomFlip'),
    dict(type='PackInputs'),
]
train_dataloader = dict(
    batch_size=45,
    collate_fn=dict(type='default_collate'),
    dataset=dict(
        data_root=data_root,
        pipeline=train_pipeline,
        split='train',
        ann_file='train.txt',
        type=dataset_type),
    num_workers=1,
    persistent_workers=True,
    pin_memory=True,
    sampler=dict(shuffle=True, type='DefaultSampler'))

val_cfg = dict()
val_dataloader = dict(
    batch_size=45,
    collate_fn=dict(type='default_collate'),
    dataset=dict(
        data_root=data_root,
        pipeline=test_pipeline,
        split='val',
        ann_file='valid.txt',
        type=dataset_type),
    num_workers=1,
    persistent_workers=True,
    pin_memory=True,
    sampler=dict(shuffle=False, type='DefaultSampler'))
val_evaluator = test_evaluator
vis_backends = [
    dict(type='LocalVisBackend'),
]
visualizer = dict(
    type='UniversalVisualizer', vis_backends=[
        dict(type='LocalVisBackend'),
    ])
work_dir = './work_dirs\\resnet50_8xb32-coslr_in1k'

三、训练结果

accuracy/top1: 97.0000 accuracy/top5: 99.0000

四、结果展示





相关推荐
serve the people11 分钟前
tensorflow 零基础吃透:RaggedTensor 的不规则形状与广播机制 2
人工智能·python·tensorflow
donkey_199311 分钟前
ShiftwiseConv: Small Convolutional Kernel with Large Kernel Effect
人工智能·深度学习·目标检测·计算机视觉·语义分割·实例分割
周名彥13 分钟前
二十四芒星非硅基华夏原生AGI模型集群·全球发布声明(S∅-Omega级·纯念主权版)
人工智能·去中心化·知识图谱·量子计算·agi
周名彥15 分钟前
1Ω1[特殊字符]⊗雙朕周名彥實際物理載體|二十四芒星物理集群载体群:超級數據中心·AGI·IPO·GUI·智能體工作流
人工智能·神经网络·知识图谱·量子计算·agi
Leinwin17 分钟前
Microsoft 365 Copilot:更“懂你”的AI助手
人工智能·microsoft·copilot
后端小肥肠22 分钟前
从图文到视频,如何用Coze跑通“小红书儿童绘本”的商业闭环?
人工智能·aigc·coze
飞睿科技28 分钟前
ESP Audio Effects音频库迎来专业升级,v1.2.0 新增动态控制核心
人工智能·物联网·ffmpeg·智能家居·语音识别·乐鑫科技·esp
reddingtons34 分钟前
PS 参考图像:线稿上色太慢?AI 3秒“喂”出精细厚涂
前端·人工智能·游戏·ui·aigc·游戏策划·游戏美术
西格电力科技43 分钟前
光伏四可“可观”功能:光伏电站全景数字化的底层支撑技术
大数据·人工智能·架构·能源
VertGrow AI销冠1 小时前
2025年高口碑Ai获客系统软件TOP3推荐榜单
人工智能