机器学习:增强式学习Reinforcement learning

  • 收集有标签数据比较困难的时候
  • 同时也不知道什么答案是比较好的时候
  • 可以考虑使用强化学习
  • 通过互动,机器可以自己知道什么结果是好的,什么结果是坏的

Outline

什么是RL

  • Action就是一个function
  • Environment就是告诉这个Action是好的还是坏的

例子 Space invader

  • 只能左移动,右移动,开火
  • 任务就是杀死外星人
  • 奖励就是分数
  • 终止:杀死所有的外星人,或者自己被外星人杀死
  • 找到一个function使得得分总和最大

例子:Play Go


  • 下围棋的score只有在游戏结束的时候才有分数,+1, -1, 0
  • 中间时刻是没有得分的

RL和ML关系

Step1: 未知数的Function

  • 在RL中,未知数的Function就是Action
  • 输入是网络观察到的
  • 输出是每个动作的反馈
  • 分数就是激励,基于分数去有概率的随机性采取对应的行动,增加多样性

Step2:定义Loss


  • 把所有的reward进行累加作为最终分数
  • Loss就是要最大虾该总和分数

Step3:优化器

  • 给定的随机行为,有随机的反应
  • 如何找到一组参数去使得分数越大越好
  • 类比于GAN,但是Reward和env不能当作是network,是一个黑盒子

Policy Gradient

如何控制你的action

  • 希望采用的模型,可以类比一个分类器
  • 希望不采用什么动作的模型,可以使用上面取反
  • 使得e1越小越好,使得e2越大越好

收集一些训练数据

但不一定是只有两种情况,不是二分类问题,可以采用不同的数字表示不同程度的期待

定义A

版本1

随机的Action得到结果,然后进行评价正负

  • 该版本不是一个好的版本
  • 短视近利的Action,没有长远规划
  • 每个动作都影响后续的动作
  • 奖励延迟,需要牺牲短期利益获得长远利益

版本2

  • 把每个动作之后的分数都加起来作为该动作的分数

版本3

  • 相邻的动作影响更大一点,越远的距离的动作影响越小

版本4

  • 需要对分数进行标准化,减掉一个baseline b,使得分数有正有负

Policy Gradient

  • 收集资料是在epoch循环中

  • 每次Update之后需要重新收集资料
  • RL训练非常耗时
    同一种行为对于不同的s是好坏是不一样的,是一个连续的。

  • off-policy可以不用在更新前收集资料了,只需要收集一次

  • 增加随机性,尝试不同的action

PPO


相关推荐
极海拾贝7 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派7 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
小和尚同志7 小时前
又来学习提示词啦~13.9k star 的系统提示词集合
人工智能·aigc
昨夜见军贴06167 小时前
IACheck × AI审核重构检测方式:破解工业检测报告频繁返工的根本难题
人工智能·重构
知乎的哥廷根数学学派7 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
好奇龙猫8 小时前
【AI学习-comfyUI学习-三十二节-FLXU原生态反推+controlnet depth(UNion)工作流-各个部分学习】
人工智能·学习
peixiuhui8 小时前
EdgeGateway 快速开始手册-表达式 Modbus 报文格式
人工智能·mqtt·边缘计算·iot·modbus tcp·iotgateway·modbus rtu
bing.shao9 小时前
golang 做AI任务执行
开发语言·人工智能·golang
鼎道开发者联盟9 小时前
2025中国AI开源生态报告发布,鼎道智联助力产业高质量发展
人工智能·开源·gui