测试TensorFlow/PyTorch的GPU版本是否启用

文章目录

  • [1. Pytorch测试代码](#1. Pytorch测试代码)
  • [2. TensorFlow测试代码](#2. TensorFlow测试代码)

后续遇到好的会不断更新。。。


1. Pytorch测试代码

python 复制代码
import torch
def gpu_is_available():
    print('\nGPU details:')
    print(f'    gpu_is_available      : ', torch.cuda.is_available())
    print(f'    cuda_device_count     : ', torch.cuda.device_count())
    print(f'    cuda_device_name      : ', torch.cuda.get_device_name())
    print(f'    cuda_device_capability: ', torch.cuda.get_device_capability(0))
gpu_is_available()

来源:"PyTorch快速安装并验证GPU是否可用"

python 复制代码
#测试pytorch-gpu是否能用
import torch
flag = torch.cuda.is_available()
print(flag)
ngpu= 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print('cuda设备名:',device)
print('gpu名称:',torch.cuda.get_device_name(0))
print('pytorch版本:',torch.__version__)
print('cuda版本:',torch.version.cuda)
print('cudnn版本号:',torch.backends.cudnn.version())
print('定义一个torch格式的3*3的矩阵:',torch.rand(3,3).cuda())

来源:"如何测试pytorch-gpu版本和tensorflow-gpu版本是否安装成功"

python 复制代码
import torch
# 使用GPU训练
if not torch.cuda.is_available():
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available.  Training on GPU ...')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

来源:"深入学习之anaconda、pytorch、cuda安装"

python 复制代码
#coding=gbk
import torch

# 定义张量的形状和大小
shape = (100, 1000)
num_tensors = 50000

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
data = [torch.rand(shape, device=device) for _ in range(num_tensors)]

total_sum = torch.tensor([0.0])
for tensor in data:
    total_sum += tensor.sum().cpu()

print('Total sum:', total_sum.item())

来源:"测试pytorch-gpu"

2. TensorFlow测试代码

python 复制代码
#测试tensorflow-gpu是否能用
import tensorflow as tf
print('\n\nGPU',tf.config.list_physical_devices('GPU'))
a = tf.constant(2.)
b = tf.constant(4.)
print('打印a*b:',a * b)
print("tensorflow版本:", tf.__version__)

来源:"如何测试pytorch-gpu版本和tensorflow-gpu版本是否安装成功"

python 复制代码
import tensorflow as tf
print(tf.test.is_gpu_available())

来源:"检测安装Tensorflow后是否成功调用GPU"

相关推荐
仗剑_走天涯32 分钟前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
cnbestec2 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl2 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji3 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
ai小鬼头4 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域4 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊5 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor
12点一刻5 小时前
搭建自动化工作流:探寻解放双手的有效方案(2)
运维·人工智能·自动化·deepseek
未来之窗软件服务5 小时前
东方仙盟AI数据中间件使用教程:开启数据交互与自动化应用新时代——仙盟创梦IDE
运维·人工智能·自动化·仙盟创梦ide·东方仙盟·阿雪技术观
JNU freshman6 小时前
计算机视觉速成 之 概述
人工智能·计算机视觉