分布式理论协议与算法 第三弹 BASE理论

大部分人解释这 CAP 定律时,常常简单的表述为:"一致性、可用性、分区容错性三者你只能同时达到其中两个,不可能同时达到"。实际上这是一个非常具有误导性质的说法,而且在 CAP 理论诞生 12 年之后,CAP 之父也在 2012 年重写了之前的论文。

当发生网络分区的时候,如果我们要继续服务,那么强一致性和可用性只能 2 选 1。也就是说当网络分区之后 P 是前提,决定了 P 之后才有 C 和 A 的选择。也就是说分区容错性(Partition tolerance)我们是必须要实现的。

简而言之就是:CAP 理论中分区容错性 P 是一定要满足的,在此基础上,只能满足可用性 A 或者一致性 C。

因此,分布式系统理论上不可能选择 CA 架构,只能选择 CP 或者 AP 架构。


文章目录

    • [一、BASE 理论概述](#一、BASE 理论概述)
        • [1、CAP 的三选二伪命题](#1、CAP 的三选二伪命题)
        • [2、Base 理论简介](#2、Base 理论简介)
    • [二、BASE 理论的内容](#二、BASE 理论的内容)
        • [1、基本可用(Basically Available)](#1、基本可用(Basically Available))
        • [2、软状态(Soft State)](#2、软状态(Soft State))
        • [3、最终一致性(Eventually Consistent)](#3、最终一致性(Eventually Consistent))
    • [三、BASE 理论总结](#三、BASE 理论总结)

一、BASE 理论概述

1、CAP 的三选二伪命题

CAP 理论回顾:CAP 理论,也被称为 CAP 协议,指的是在一个分布式系统中,最多只能同时满足「一致性(Consistency)」、「可用性(Availability)」和「分区容错性(Partition tolerance)」这三项中的两项,不可能三者兼顾。

大部分人解释这 CAP 定律时,常常简单的表述为:"一致性、可用性、分区容错性三者你只能同时达到其中两个,不可能同时达到"。实际上这是一个非常具有误导性质的说法,而且在 CAP 理论诞生 12 年之后,CAP 之父也在 2012 年重写了之前的论文。

当发生网络分区的时候,如果我们要继续服务,那么强一致性和可用性只能 2 选 1。也就是说当网络分区之后 P 是前提,决定了 P 之后才有 C 和 A 的选择。也就是说分区容错性(Partition tolerance)我们是必须要实现的。

简而言之就是:CAP 理论中分区容错性 P 是一定要满足的,在此基础上,只能满足可用性 A 或者一致性 C。

因此,分布式系统理论上不可能选择 CA 架构,只能选择 CP 或者 AP 架构。

2、Base 理论简介

BASE 理论是由 eBay 架构师提出的。BASE 是对 CAP 中一致性和可用性权衡的结果,其来源于对大规模互联网分布式系统实践的总结,是基于 CAP 定律逐步演化而来。其核心思想是即使无法做到强一致性,但每个应用都可以根据自身业务特点,才用适当的方式来使系统打到最终一致性。

BASE 理论 是 Basically Available(基本可用),Soft State(软状态)和 Eventually Consistent(最终一致性)三个短语的缩写。


二、BASE 理论的内容

1、基本可用(Basically Available)

什么是基本可用呢?假设系统,出现了不可预知的故障,但还是能用,相比较正常的系统而言:

  1. 响应时间上的损失:正常情况下的搜索引擎 0.5 秒即返回给用户结果,而基本可用的搜索引擎可以在 2 秒作用返回结果。
  2. 功能上的损失:在一个电商网站上,正常情况下,用户可以顺利完成每一笔订单。但是到了大促期间,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。
2、软状态(Soft State)

什么是软状态呢?相对于原子性而言,要求多个节点的数据副本都是一致的,这是一种"硬状态"。

软状态指的是:允许系统中的数据存在中间状态,并认为该状态不影响系统的整体可用性,即允许系统在多个不同节点的数据副本存在数据延时。

3、最终一致性(Eventually Consistent)

上面说软状态,然后不可能一直是软状态,必须有个时间期限。在期限过后,应当保证所有副本保持数据一致性,从而达到数据的最终一致性。这个时间期限取决于网络延时、系统负载、数据复制方案设计等等因素。

而在实际工程实践中,最终一致性分为5种:

  • 因果一致性:如果节点 A 在更新完某个数据后通知了节点 B,那么节点 B 之后对该数据的访问和修改都是基于 A 更新后的值。于此同时,和节点 A 无因果关系的节点 C 的数据访问则没有这样的限制。
  • 读己之所写:节点 A 更新一个数据后,它自身总是能访问到自身更新过的最新值,而不会看到旧值。其实也算一种因果一致性。
  • 会话一致性:将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现 "读己之所写" 的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。
  • 单调读一致性:如果一个节点从系统中读取出一个数据项的某个值后,那么系统对于该节点后续的任何数据访问都不应该返回更旧的值。
  • 单调写一致性:一个系统要能够保证来自同一个节点的写操作被顺序的执行。

在实际的实践中,这 5 种系统往往会结合使用,以构建一个具有最终一致性的分布式系统。

实际上,不只是分布式系统使用最终一致性,关系型数据库在某个功能上,也是使用最终一致性的。比如备份,数据库的复制过程是需要时间的,这个复制过程中,业务读取到的值就是旧的。当然,最终还是达成了数据一致性。这也算是一个最终一致性的经典案例。

总体来说BASE理论面向的是大型高可用、可扩展的分布式系统。与传统 ACID 特性相反,不同于 ACID 的强一致性模型,BASE 提出通过牺牲强一致性来获得可用性,并允许数据段时间内的不一致,但是最终达到一致状态。同时,在实际分布式场景中,不同业务对数据的一致性要求不一样。因此在设计中,ACID 和 BASE 理论往往又会结合使用。


三、BASE 理论总结

总体来说 BASE 理论面向的是大型高可用、可扩展的分布式系统。与传统 ACID 特性相反,不同于 ACID 的强一致性模型,BASE 提出通过牺牲强一致性来获得可用性,并允许数据段时间内的不一致,但是最终达到一致状态。同时,在实际分布式场景中,不同业务对数据的一致性要求不一样。因此在设计中,ACID 和 BASE 理论往往又会结合使用。

相关推荐
GIS数据转换器4 分钟前
2025无人机遥感新国标解读
大数据·科技·安全·机器学习·无人机·智慧城市
Light606 分钟前
破局“数据孤岛”:构建业务、财务、指标三位一体的智能数据模型
java·大数据·开发语言
中文很快乐7 分钟前
从零到一:用 SpringBoot 打造 RESTful API 实战指南
java·spring boot·后端·restful
一个java开发8 分钟前
Dask 配置文件加载机制说明
大数据·python
泉城老铁8 分钟前
springboot+redis 如何实现订单的过期
java·后端·架构
哈哈哈笑什么12 分钟前
在高并发分布式SpringCloud系统中,什么时候时候并行查询,提高查询接口效率,从10s到100ms
java·分布式·后端
IMPYLH13 分钟前
Lua 的 warn 函数
java·开发语言·笔记·junit·lua
泉城老铁16 分钟前
如何用Spring Boot实现分布式锁?
java·redis·后端
半夏知半秋21 分钟前
Elasticsearch Query DSL 指令整理
大数据·数据库·笔记·学习·elasticsearch·搜索引擎·全文检索
周杰伦_Jay23 分钟前
【Java集合与线程池深度解析】底层原理+实战选型+避坑指南(附代码)
java·开发语言·python