1316:【例4.6】数的计数(Noip2001) 代码+解析

1316:【例4.6】数的计数(Noip2001)

【题目描述】

我们要求找出具有下列性质数的个数(包括输入的自然数n

)。先输入一个自然数n(n≤1000),然后对此自然数按照如下方法进行处理:不作任何处理;在它的左边加上一个自然数,但该自然数不能超过原数的一半;加上数后,继续按此规则进行处理,直到不能再加自然数为止。

【输入】

自然数n(n≤1000)。

【输出】

满足条件的数。

【输入样例】

6

【输出样例】

6

【提示】

【样例解释】

满足条件的数为如下所示:

6

16

26

126

36

136

思路:

  • 首先分析: 一个自然数左边加上一个自然数:举例-100,左边加上后可以为50100,,,,2550,,,,,49100,,,24100,,,所以他的数量为1~50这五十个自然数的每次计数之和
  • 由于每个自然数独一无二,左边加上一个自然数就多了该自然数的排列方式,所以可以理解为前n/2个自然数不同排列组成的数的个数之和
  • 由于数据庞大,在使用递归式时可以考虑该数组的值是否已经求了,如果已求,则可以直接跳过,节省运行时间(记忆搜索
  • 如果采用一层for循环的递归方式则会超时:用一个变量去存,由于每次都要从1开始计算,所以会超时
cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
//由于直接每次num(i),只是用sum记忆次数,则会超时,所以选择用记忆的方式,每次计算后存起来 
//记忆搜索(一个if判断数组值是否为0)+递归 
int sum = 0,a[1001];
//定义计数的函数
void num(int m) ;
int main(){
	int n;
    cin>>n;
	num(n);
	cout<<a[n];
	return 0;
} 
void num(int m){
    
    if(a[m]>0) return;//表示该数值已经求到了
    a[m]=1;// 自身也是一种情况 
	for(int i=1;i<=m/2;i++){
		num(i);//每次都递归一下(避免前面的数未计数) 
		a[m]+=a[i];
	}
}
相关推荐
Musennn18 分钟前
leetcode 15.三数之和 思路分析
算法·leetcode·职场和发展
君鼎1 小时前
C++设计模式——单例模式
c++·单例模式·设计模式
刚入门的大一新生3 小时前
C++初阶-string类的模拟实现与改进
开发语言·c++
CM莫问3 小时前
<论文>(微软)避免推荐域外物品:基于LLM的受限生成式推荐
人工智能·算法·大模型·推荐算法·受限生成
小冯的编程学习之路3 小时前
【软件测试】:推荐一些接口与自动化测试学习练习网站(API测试与自动化学习全攻略)
c++·selenium·测试工具·jmeter·自动化·测试用例·postman
康谋自动驾驶4 小时前
康谋分享 | 自动驾驶仿真进入“标准时代”:aiSim全面对接ASAM OpenX
人工智能·科技·算法·机器学习·自动驾驶·汽车
C++ 老炮儿的技术栈4 小时前
什么是函数重载?为什么 C 不支持函数重载,而 C++能支持函数重载?
c语言·开发语言·c++·qt·算法
猪八戒1.05 小时前
C++ 回调函数和Lambda表达式
c++
yychen_java5 小时前
R-tree详解
java·算法·r-tree
源远流长jerry5 小时前
匿名函数lambda、STL与正则表达式
c++