1316:【例4.6】数的计数(Noip2001) 代码+解析

1316:【例4.6】数的计数(Noip2001)

【题目描述】

我们要求找出具有下列性质数的个数(包括输入的自然数n

)。先输入一个自然数n(n≤1000),然后对此自然数按照如下方法进行处理:不作任何处理;在它的左边加上一个自然数,但该自然数不能超过原数的一半;加上数后,继续按此规则进行处理,直到不能再加自然数为止。

【输入】

自然数n(n≤1000)。

【输出】

满足条件的数。

【输入样例】

6

【输出样例】

6

【提示】

【样例解释】

满足条件的数为如下所示:

6

16

26

126

36

136

思路:

  • 首先分析: 一个自然数左边加上一个自然数:举例-100,左边加上后可以为50100,,,,2550,,,,,49100,,,24100,,,所以他的数量为1~50这五十个自然数的每次计数之和
  • 由于每个自然数独一无二,左边加上一个自然数就多了该自然数的排列方式,所以可以理解为前n/2个自然数不同排列组成的数的个数之和
  • 由于数据庞大,在使用递归式时可以考虑该数组的值是否已经求了,如果已求,则可以直接跳过,节省运行时间(记忆搜索
  • 如果采用一层for循环的递归方式则会超时:用一个变量去存,由于每次都要从1开始计算,所以会超时
cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
//由于直接每次num(i),只是用sum记忆次数,则会超时,所以选择用记忆的方式,每次计算后存起来 
//记忆搜索(一个if判断数组值是否为0)+递归 
int sum = 0,a[1001];
//定义计数的函数
void num(int m) ;
int main(){
	int n;
    cin>>n;
	num(n);
	cout<<a[n];
	return 0;
} 
void num(int m){
    
    if(a[m]>0) return;//表示该数值已经求到了
    a[m]=1;// 自身也是一种情况 
	for(int i=1;i<=m/2;i++){
		num(i);//每次都递归一下(避免前面的数未计数) 
		a[m]+=a[i];
	}
}
相关推荐
前端小L5 小时前
贪心算法专题(十):维度权衡的艺术——「根据身高重建队列」
javascript·算法·贪心算法
方得一笔5 小时前
自定义常用的字符串函数(strlen,strcpy,strcmp,strcat)
算法
Xの哲學5 小时前
Linux SMP 实现机制深度剖析
linux·服务器·网络·算法·边缘计算
Thera7775 小时前
状态机(State Machine)详解:原理、优缺点与 C++ 实战示例
开发语言·c++
linux开发之路5 小时前
C++高性能日志库开发实践
c++·c++项目·后端开发·c++新特性·c++校招
wuk9985 小时前
使用PCA算法进行故障诊断的MATLAB仿真
算法·matlab
额呃呃5 小时前
二分查找细节理解
数据结构·算法
无尽的罚坐人生6 小时前
hot 100 283. 移动零
数据结构·算法·双指针
刻BITTER6 小时前
在TRAE 上安装PlatformIO
c++·单片机·嵌入式硬件·arduino
永远都不秃头的程序员(互关)6 小时前
C++动态数组实战:从手写到vector优化
c++·算法