基于opencv识别动态验证码

基于opencv识别动态验证码

背景:

​ 验证码可以分为静态验证码和动态验证码。静态验证码通常以 .png.jpg 等静态图片格式结尾,而动态验证码一般以 .gif 格式结尾。一些更具挑战性的验证码是基于动态验证码的。

​ 静态验证码是一张固定的图片,其中包含了随机生成的文本或图形等信息。用户需要正确识别并输入验证码中的内容以完成验证。

​ 动态验证码则是一系列连续变化的图像,以 .gif 格式展示。这些图像通常包含有旋转、闪烁、变形等特效,使其更具难度。用户需要观察并输入动态验证码中的正确信息。

​ 动态验证码相对于静态验证码更具安全性,因为它们更难以被自动化程序或机器识别。这种类型的验证码对于防止恶意登录、爬虫等攻击起到了更好的保护作用。

实现思路:

​ 假如我的本地有一张.gif的动态验证码,动态验证码其实是将多张静态验证码拼起来形成的一张动态效果图,那么如何去识别呢?

步骤:

  1. 首先我们对这一张动态图片进行抽取帧。
  2. 然后将多张图片基于opencv融合到一张图片上。
  3. 再利于OCR或者ddddocr进行识别即可。

代码:

py 复制代码
from PIL import Image
import numpy as np
import cv2
import ddddocr

# 将gif专户为图片
gif_path = r'D:\Downloads\gif_img.gif'
img = Image.open(gif_path)
shapes = []
# 因为gif动图是由4张图片合成的 可以多抽取几张 
for i in range(0, 4):
    img.seek(i)
    img.save(r'./img/{}.png'.format(i)) # 抽取每一帧
    img_arr=np.array(img)
    shapes.append(img_arr)
shapes[0] = np.expand_dims(shapes[0],axis = 2)
img_shape = shapes[0] + shapes[1]+shapes[2]+shapes[3]
print(img_shape)
cv2.imwrite('./img/result.png',img_shape) # 生成合成图

我们看一下每一帧图片:

我们在看一下合成图:

成功!

总结:

希望这个总结对你有帮助!如果还有其他问题,请随时提问。

相关推荐
师范大学生6 分钟前
基于CNN的FashionMNIST数据集识别2——模型训练
python·深度学习·cnn
CodeJourney.6 分钟前
EndNote与Word关联:科研写作的高效助力
数据库·人工智能·算法·架构
web1376560764314 分钟前
纯 Python、Django、FastAPI、Flask、Pyramid、Jupyter、dbt 解析和差异分析
python·django·fastapi
jingwang-cs14 分钟前
内外网文件传输 安全、可控、便捷的跨网数据传输方案
人工智能·后端·安全
大模型铲屎官16 分钟前
哈希表入门到精通:从原理到 Python 实现全解析
开发语言·数据结构·python·算法·哈希算法·哈希表
乐享数科26 分钟前
乐享数科:供应链金融—三个不同阶段的融资模式
大数据·人工智能·金融
幻想趾于现实33 分钟前
视觉应用工程师(面试)
人工智能·数码相机·计算机视觉
果壳中的robot34 分钟前
【ORB-SLAM3】鲁棒核函数的阈值设置
算法·计算机视觉·机器人
qq40542519742 分钟前
基于python的旅客游记和轨迹分析可视化系统设计(新)
开发语言·python
简简单单做算法1 小时前
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
人工智能·lstm·bilstm·pso-bilstm·pso·双向长短期记忆网络·序列预测