基于opencv识别动态验证码

基于opencv识别动态验证码

背景:

​ 验证码可以分为静态验证码和动态验证码。静态验证码通常以 .png.jpg 等静态图片格式结尾,而动态验证码一般以 .gif 格式结尾。一些更具挑战性的验证码是基于动态验证码的。

​ 静态验证码是一张固定的图片,其中包含了随机生成的文本或图形等信息。用户需要正确识别并输入验证码中的内容以完成验证。

​ 动态验证码则是一系列连续变化的图像,以 .gif 格式展示。这些图像通常包含有旋转、闪烁、变形等特效,使其更具难度。用户需要观察并输入动态验证码中的正确信息。

​ 动态验证码相对于静态验证码更具安全性,因为它们更难以被自动化程序或机器识别。这种类型的验证码对于防止恶意登录、爬虫等攻击起到了更好的保护作用。

实现思路:

​ 假如我的本地有一张.gif的动态验证码,动态验证码其实是将多张静态验证码拼起来形成的一张动态效果图,那么如何去识别呢?

步骤:

  1. 首先我们对这一张动态图片进行抽取帧。
  2. 然后将多张图片基于opencv融合到一张图片上。
  3. 再利于OCR或者ddddocr进行识别即可。

代码:

py 复制代码
from PIL import Image
import numpy as np
import cv2
import ddddocr

# 将gif专户为图片
gif_path = r'D:\Downloads\gif_img.gif'
img = Image.open(gif_path)
shapes = []
# 因为gif动图是由4张图片合成的 可以多抽取几张 
for i in range(0, 4):
    img.seek(i)
    img.save(r'./img/{}.png'.format(i)) # 抽取每一帧
    img_arr=np.array(img)
    shapes.append(img_arr)
shapes[0] = np.expand_dims(shapes[0],axis = 2)
img_shape = shapes[0] + shapes[1]+shapes[2]+shapes[3]
print(img_shape)
cv2.imwrite('./img/result.png',img_shape) # 生成合成图

我们看一下每一帧图片:

我们在看一下合成图:

成功!

总结:

希望这个总结对你有帮助!如果还有其他问题,请随时提问。

相关推荐
开发者每周简报11 分钟前
微软的AI转型故事
人工智能·microsoft
dundunmm14 分钟前
机器学习之scikit-learn(简称 sklearn)
python·算法·机器学习·scikit-learn·sklearn·分类算法
古希腊掌管学习的神14 分钟前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
一道微光28 分钟前
Mac的M2芯片运行lightgbm报错,其他python包可用,x86_x64架构运行
开发语言·python·macos
普密斯科技43 分钟前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu1361 小时前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练
是娜个二叉树!1 小时前
图像处理基础 | 格式转换.rgb转.jpg 灰度图 python
开发语言·python
互联网杂货铺1 小时前
Postman接口测试:全局变量/接口关联/加密/解密
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·postman
日出等日落1 小时前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理