基于opencv识别动态验证码

基于opencv识别动态验证码

背景:

​ 验证码可以分为静态验证码和动态验证码。静态验证码通常以 .png.jpg 等静态图片格式结尾,而动态验证码一般以 .gif 格式结尾。一些更具挑战性的验证码是基于动态验证码的。

​ 静态验证码是一张固定的图片,其中包含了随机生成的文本或图形等信息。用户需要正确识别并输入验证码中的内容以完成验证。

​ 动态验证码则是一系列连续变化的图像,以 .gif 格式展示。这些图像通常包含有旋转、闪烁、变形等特效,使其更具难度。用户需要观察并输入动态验证码中的正确信息。

​ 动态验证码相对于静态验证码更具安全性,因为它们更难以被自动化程序或机器识别。这种类型的验证码对于防止恶意登录、爬虫等攻击起到了更好的保护作用。

实现思路:

​ 假如我的本地有一张.gif的动态验证码,动态验证码其实是将多张静态验证码拼起来形成的一张动态效果图,那么如何去识别呢?

步骤:

  1. 首先我们对这一张动态图片进行抽取帧。
  2. 然后将多张图片基于opencv融合到一张图片上。
  3. 再利于OCR或者ddddocr进行识别即可。

代码:

py 复制代码
from PIL import Image
import numpy as np
import cv2
import ddddocr

# 将gif专户为图片
gif_path = r'D:\Downloads\gif_img.gif'
img = Image.open(gif_path)
shapes = []
# 因为gif动图是由4张图片合成的 可以多抽取几张 
for i in range(0, 4):
    img.seek(i)
    img.save(r'./img/{}.png'.format(i)) # 抽取每一帧
    img_arr=np.array(img)
    shapes.append(img_arr)
shapes[0] = np.expand_dims(shapes[0],axis = 2)
img_shape = shapes[0] + shapes[1]+shapes[2]+shapes[3]
print(img_shape)
cv2.imwrite('./img/result.png',img_shape) # 生成合成图

我们看一下每一帧图片:

我们在看一下合成图:

成功!

总结:

希望这个总结对你有帮助!如果还有其他问题,请随时提问。

相关推荐
dhdjjsjs21 分钟前
Day35 PythonStudy
python
LaughingZhu22 分钟前
Product Hunt 每日热榜 | 2025-12-10
人工智能·经验分享·深度学习·神经网络·产品运营
老蒋新思维25 分钟前
创客匠人 2025 万人峰会核心:AI 驱动知识产品变现革新
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
音沐mu.26 分钟前
【34】犬类品种数据集(有v5/v8模型)/YOLO犬类品种检测
人工智能·yolo·目标检测·犬类品种数据集·犬类品种检测
Want59527 分钟前
Vibe Coding实战案例:利用Qoder打造个人知识库AI助手,并上线魔搭创空间
人工智能·aigc
多则惑少则明33 分钟前
AI测试、大模型测试(七)Java主流大模型框架技术
人工智能·ai测试·ai大模型测试
xinyu_Jina34 分钟前
人像精灵 AI 智能相馆:特征解耦与条件生成对抗网络(cGANs)在人像重构中的应用
人工智能·生成对抗网络·重构
木卫二号Coding37 分钟前
第五十七篇-ComfyUI+V100-32G+安装SD1.5
人工智能
如竟没有火炬1 小时前
四数相加贰——哈希表
数据结构·python·算法·leetcode·散列表