基于opencv识别动态验证码

基于opencv识别动态验证码

背景:

​ 验证码可以分为静态验证码和动态验证码。静态验证码通常以 .png.jpg 等静态图片格式结尾,而动态验证码一般以 .gif 格式结尾。一些更具挑战性的验证码是基于动态验证码的。

​ 静态验证码是一张固定的图片,其中包含了随机生成的文本或图形等信息。用户需要正确识别并输入验证码中的内容以完成验证。

​ 动态验证码则是一系列连续变化的图像,以 .gif 格式展示。这些图像通常包含有旋转、闪烁、变形等特效,使其更具难度。用户需要观察并输入动态验证码中的正确信息。

​ 动态验证码相对于静态验证码更具安全性,因为它们更难以被自动化程序或机器识别。这种类型的验证码对于防止恶意登录、爬虫等攻击起到了更好的保护作用。

实现思路:

​ 假如我的本地有一张.gif的动态验证码,动态验证码其实是将多张静态验证码拼起来形成的一张动态效果图,那么如何去识别呢?

步骤:

  1. 首先我们对这一张动态图片进行抽取帧。
  2. 然后将多张图片基于opencv融合到一张图片上。
  3. 再利于OCR或者ddddocr进行识别即可。

代码:

py 复制代码
from PIL import Image
import numpy as np
import cv2
import ddddocr

# 将gif专户为图片
gif_path = r'D:\Downloads\gif_img.gif'
img = Image.open(gif_path)
shapes = []
# 因为gif动图是由4张图片合成的 可以多抽取几张 
for i in range(0, 4):
    img.seek(i)
    img.save(r'./img/{}.png'.format(i)) # 抽取每一帧
    img_arr=np.array(img)
    shapes.append(img_arr)
shapes[0] = np.expand_dims(shapes[0],axis = 2)
img_shape = shapes[0] + shapes[1]+shapes[2]+shapes[3]
print(img_shape)
cv2.imwrite('./img/result.png',img_shape) # 生成合成图

我们看一下每一帧图片:

我们在看一下合成图:

成功!

总结:

希望这个总结对你有帮助!如果还有其他问题,请随时提问。

相关推荐
狂奔solar17 小时前
Apple 开源FastVLM:AI看图说话更快更准
人工智能
星空的资源小屋17 小时前
Antares SQL,一款跨平台开源 SQL 客户端
数据库·人工智能·pdf·开源·电脑·excel·1024程序员节
集和诚JHCTECH17 小时前
赋能边缘智能:BRAV-7722搭载全新Edge BMC模块,开启远程运维新纪元!
人工智能·嵌入式硬件
WLJT12312312317 小时前
生活电器:重构家居体验的产业变革与发展探索
大数据·人工智能·科技·生活
~~李木子~~17 小时前
聚类算法实战:从 KMeans 到 DBSCAN
人工智能·机器学习·支持向量机
AI棒棒牛17 小时前
论文精读系列:Retinanet——目标检测领域中的SCI对比实验算法介绍!可一键跑通的对比实验,极大节省小伙伴的时间!!!
yolo·目标检测·计算机视觉·对比实验·1024程序员节·创新·rtdter
Python×CATIA工业智造18 小时前
Python函数包装技术详解:从基础装饰器到高级应用
python·pycharm
落羽的落羽18 小时前
【Linux系统】从零掌握make与Makefile:高效自动化构建项目的工具
linux·服务器·开发语言·c++·人工智能·机器学习·1024程序员节
应用市场18 小时前
VSCode + AI Agent实现直接编译调试:告别Visual Studio的原理与实践
人工智能·vscode·visual studio
GIS数据转换器18 小时前
城市基础设施安全运行监管平台
大数据·运维·人工智能·物联网·安全·无人机·1024程序员节