leetcode 1314. 矩阵区域和(优质解法)

代码:

java 复制代码
class Solution {
    public int[][] matrixBlockSum(int[][] mat, int k) {
        int m=mat.length;
        int n=mat[0].length;

        int[][]answer=new int[m][n];    //要返回的结果矩阵
        int[][]sum=new int[m+1][n+1];   //前缀和数组

        //初始化前缀和数组
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                sum[i][j]=sum[i][j-1]+sum[i-1][j]-sum[i-1][j-1]+mat[i-1][j-1];
            }
        }

        //获取要计算区间的下标(x1,y1)(x2,y2)
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                int x1=Math.max(i-k,0)+1;
                int y1=Math.max(j-k,0)+1;
                int x2=Math.min(i+k,m-1)+1;
                int y2=Math.min(j+k,n-1)+1;

                answer[i][j]=sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1];
            }
        }

        return answer;
    }
}

题解:

本题的题意可能有点不好理解,可以通过我下面画的图来进行理解

如上图,当想要获得 answer[ i ][ j ] 的值时,需要计算 mat 数组中 (i-k,j-k)到 (i+k,j+k)这个矩形中的数据总和

有关计算矩形中数据和的题目,通常使用二维前缀和来解决

首先需要计算 mat 数组对应的二维前缀和数组 sum,sum[ i ][ j ] 就代表 mat 数组中从(1,1)下标到(i,j)下标二维数组数据的总和

关于填充二维前缀和数组,以及如何利用二维前缀和数组计算出指定区间中的数据和,都在之前的博客中详细写过,推荐看牛客网 DP35 【模板】二维前缀和

看了上述博客后解决该题目的主体就懂了,现在就要介绍一些细节问题,假设要计算的二维数组是(x1,y1)到(x2,y2)区间,按照题目的要求进行计算时会出现越界的情况,x1 和 y1 下标会出现比 0 小的情况,此时就需要把 x1 和 y1 放到 0 位置上,如下图所示,x2,y2 的下标会出现比 m-1,n-1 大的情况,此时也需要把 x2,y2,放到 m-1,n-1 的位置上

在编写代码时还要注意前缀和数组是比 mat 和 answer 数组多一行一列的(为了消除边界影响),所以 mat[ i ][ j ] 对应 sum[ i+1 ][ j+1 ]

相关推荐
CoovallyAIHub7 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
NAGNIP8 小时前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo8 小时前
半开区间和开区间的两个二分模版
算法
moonlifesudo8 小时前
300:最长递增子序列
算法
CoovallyAIHub13 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub13 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农2 天前
【React用到的一些算法】游标和栈
算法·react.js