【Flink-Kafka-To-Hive】使用 Flink 实现 Kafka 数据写入 Hive

需求描述:

1、数据从 Kafka 写入 Hive。

2、相关配置存放于 Mysql 中,通过 Mysql 进行动态读取。

3、此案例中的 Kafka 是进行了 Kerberos 安全认证的,如果不需要自行修改。

4、Flink 集成 Kafka 写入 Hive 需要进行 checkpoint 才能落盘至 HDFS。

5、先在 Hive 中创建表然后动态获取 Hive 的表结构。

6、Kafka 数据为 Json 格式,通过 FlatMap 扁平化处理后,根据表结构封装到 Row 中后完成写入。

7、写入时转换成临时视图模式,利用 Flink-Sql 实现数据写入。

8、本地测试时 Hive 相关文件要放置到 resources 目录下。

9、本地测试时可以编辑 resources.flink_backup_local.yml 通过 ConfigTools.initConf 方法获取配置。

1)导入相关依赖

这里的依赖比较冗余,大家可以根据各自需求做删除或保留。

xml 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>example.cn.test</groupId>
    <artifactId>kafka2hive</artifactId>
    <version>1.0.0</version>

    <properties>
        <hbase.version>2.3.3</hbase.version>
        <hadoop.version>3.1.1</hadoop.version>
        <spark.version>3.0.2</spark.version>
        <scala.version>2.12.10</scala.version>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <flink.version>1.14.0</flink.version>
        <scala.binary.version>2.12</scala.binary.version>
        <target.java.version>1.8</target.java.version>
        <maven.compiler.source>${target.java.version}</maven.compiler.source>
        <maven.compiler.target>${target.java.version}</maven.compiler.target>
        <log4j.version>2.17.2</log4j.version>
        <hadoop.version>3.1.2</hadoop.version>
        <hive.version>3.1.2</hive.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>gaei.cn.x5l.bigdata.common</groupId>
            <artifactId>x5l-bigdata-common</artifactId>
            <version>1.1-SNAPSHOT</version>
            <exclusions>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-core</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-slf4j-impl</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-api</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-dist -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-dist_2.12</artifactId>
            <version>1.14.0-csa1.7.0.0</version>
            <scope>provided</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-jdbc_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.jyaml</groupId>
            <artifactId>jyaml</artifactId>
            <version>1.3</version>
        </dependency>
        <dependency>
            <groupId>gaei.cn.x5l</groupId>
            <artifactId>tsp-gb-decode</artifactId>
            <version>1.0.0</version>
            <exclusions>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-core</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-api</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-slf4j-impl</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.44</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>gaei.cn.x5l.flink.common</groupId>
            <artifactId>x5l-flink-common</artifactId>
            <version>1.2-SNAPSHOT</version>
            <scope>compile</scope>
            <exclusions>
                <exclusion>
                    <artifactId>slf4j-api</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-core</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-api</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-slf4j-impl</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-1.2-api</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <!-- Flink Dependency -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-hive_2.12</artifactId>
            <version>1.14.0</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-shaded-hadoop-3 -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-shaded-hadoop-3</artifactId>
            <version>3.1.1.7.2.8.0-224-9.0</version>
            <scope>provided</scope>
            <exclusions>
                <exclusion>
                    <artifactId>slf4j-log4j12</artifactId>
                    <groupId>org.slf4j</groupId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-core</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-api</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-slf4j-impl</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>log4j</groupId>
                    <artifactId>log4j</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>cn.hutool</groupId>
            <artifactId>hutool-all</artifactId>
            <version>5.8.10</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba.ververica</groupId>
            <artifactId>flink-connector-mysql-cdc</artifactId>
            <version>1.4.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-jdbc_2.11</artifactId>
            <version>1.11.6</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-sql-connector-kafka_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- 基础依赖  开始-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <!-- 基础依赖  结束-->
        <!-- TABLE  开始-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge_${scala.binary.version}</artifactId>
            <version>1.14.0</version>
            <scope>provided</scope>
        </dependency>
        <!-- 使用 hive sql时注销,其他时候可以放开 -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-common</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-cep_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- TABLE  结束-->
        <!-- sql  开始-->
        <!-- sql解析 开始 -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-json</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <!-- sql解析 结束 -->
        <!-- sql连接 kafka -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-sql-connector-kafka_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- sql  结束-->
        <!-- 检查点 -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-state-processor-api_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>commons-lang</groupId>
            <artifactId>commons-lang</artifactId>
            <version>2.5</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-runtime-web_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <!-- 本地监控任务 结束 -->
        <!-- DataStream 开始 -->
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-slf4j-impl</artifactId>
            <version>${log4j.version}</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-api</artifactId>
            <version>${log4j.version}</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>${log4j.version}</version>
            <scope>runtime</scope>
        </dependency>
        <!-- hdfs -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!-- 重点,容易被忽略的jar -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-auth</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <!-- rocksdb_2 -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-statebackend-rocksdb_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <!-- 其他 -->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.1.23</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.16.18</version>
            <scope>provided</scope>
        </dependency>
            <!-- kafka2mongo 离线任务 -->
            <dependency>
                <groupId>org.mongodb</groupId>
                <artifactId>mongodb-driver</artifactId>
                <version>3.12.6</version>
            </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.0.0</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <createDependencyReducedPom>false</createDependencyReducedPom>
                            <artifactSet>
                                <excludes>
                                    <exclude>org.apache.flink:force-shading</exclude>
                                    <exclude>com.google.code.findbugs:jsr305</exclude>
                                    <exclude>org.slf4j:*</exclude>
                                    <exclude>org.apache.logging.log4j:*</exclude>
                                    <exclude>org.apache.flink:flink-runtime-web_2.11</exclude>
                                </excludes>
                            </artifactSet>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>com.owp.flink.kafka.KafkaSourceDemo</mainClass>
                                </transformer>
                                <!-- flink sql 需要  -->
                                <!-- The service transformer is needed to merge META-INF/services files -->
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
                                <!-- ... -->
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>

        <pluginManagement>
            <plugins>
                <!-- This improves the out-of-the-box experience in Eclipse by resolving some warnings. -->
                <plugin>
                    <groupId>org.eclipse.m2e</groupId>
                    <artifactId>lifecycle-mapping</artifactId>
                    <version>1.0.0</version>
                    <configuration>
                        <lifecycleMappingMetadata>
                            <pluginExecutions>
                                <pluginExecution>
                                    <pluginExecutionFilter>
                                        <groupId>org.apache.maven.plugins</groupId>
                                        <artifactId>maven-shade-plugin</artifactId>
                                        <versionRange>[3.0.0,)</versionRange>
                                        <goals>
                                            <goal>shade</goal>
                                        </goals>
                                    </pluginExecutionFilter>
                                    <action>
                                        <ignore/>
                                    </action>
                                </pluginExecution>
                                <pluginExecution>
                                    <pluginExecutionFilter>
                                        <groupId>org.apache.maven.plugins</groupId>
                                        <artifactId>maven-compiler-plugin</artifactId>
                                        <versionRange>[3.1,)</versionRange>
                                        <goals>
                                            <goal>testCompile</goal>
                                            <goal>compile</goal>
                                        </goals>
                                    </pluginExecutionFilter>
                                    <action>
                                        <ignore/>
                                    </action>
                                </pluginExecution>
                            </pluginExecutions>
                        </lifecycleMappingMetadata>
                    </configuration>
                </plugin>
            </plugins>
        </pluginManagement>

    </build>
    <repositories>
        <repository>
            <id>cdh.releases.repo</id>
            <url>https://repository.cloudera.com/artifactory/libs-release-local/</url>
            <name>Releases Repository</name>
        </repository>
    </repositories>
</project>

2)代码实现

2.1.resources

2.1.1.appconfig.yml

yml 复制代码
mysql.url: "jdbc:mysql://1.1.1.1:3306/test?useSSL=false"
mysql.username: "test"
mysql.password: "123456"
mysql.driver: "com.mysql.jdbc.Driver"

2.1.2.log4j.properties

shell 复制代码
log4j.rootLogger=info, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

2.1.3.log4j2.xml

shell 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<configuration monitorInterval="5">
    <Properties>
        <property name="LOG_PATTERN" value="%date{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n" />
        <property name="LOG_LEVEL" value="ERROR" />
    </Properties>

    <appenders>
        <console name="console" target="SYSTEM_OUT">
            <PatternLayout pattern="${LOG_PATTERN}"/>
            <ThresholdFilter level="${LOG_LEVEL}" onMatch="ACCEPT" onMismatch="DENY"/>
        </console>
        <File name="log" fileName="tmp/log/job.log" append="false">
            <PatternLayout pattern="%d{HH:mm:ss.SSS} %-5level %class{36} %L %M - %msg%xEx%n"/>
        </File>
    </appenders>

    <loggers>
        <root level="${LOG_LEVEL}">
            <appender-ref ref="console"/>
            <appender-ref ref="log"/>
        </root>
    </loggers>
</configuration>
yml 复制代码
hdfs:
  checkPointPath: 'hdfs://nameserver/user/flink/rocksdbcheckpoint'
  checkpointTimeout: 360000
  checkpointing: 300000
  maxConcurrentCheckpoints: 1
  minPauseBetweenCheckpoints: 10000
  restartInterval: 60
  restartStrategy: 3
hive:
  defaultDatabase: 'ods'
  hiveConfDir: 'D:/WorkSpace/bigdata-flink-backup/kafka2hive/src/main/resources/'
  sourceTopic: 'topicA,topicB'
  tableName: 'table_name'
kafka-consumer:
  prop:
    auto.offset.reset: 'earliest'
    bootstrap.servers: 'kfk01:9092,kfk02:9092,kfk03:9092'
    enable.auto.commit: 'false'
    fetch.max.bytes: '52428700'
    group.id: 'test'
    isKerberized: '1'
    keytab: 'D:/keytab/test.keytab'
    krb5Conf: 'D:/keytab/krb5.conf'
    max.poll.interval.ms: '300000'
    max.poll.records: '1000'
    principal: '[email protected]'
    security_protocol: 'SASL_PLAINTEXT'
    serviceName: 'kafka'
    session.timeout.ms: '600000'
    useTicketCache: 'false'
  topics: 'topicA,topicB'
kafka-producer:
  defaultTopic: 'kafka2hive_error'
  prop:
    acks: 'all'
    batch.size: '1048576'
    bootstrap.servers: 'kfk01:9092,kfk02:9092,kfk03:9092'
    compression.type: 'lz4'
    key.serializer: 'org.apache.kafka.common.serialization.StringSerializer'
    retries: '3'
    value.serializer: 'org.apache.kafka.common.serialization.StringSerializer'

2.2.utils

2.2.1.DBConn

java 复制代码
import java.sql.*;

public class DBConn {


    private static final String driver = "com.mysql.jdbc.Driver";		//mysql驱动
    private static Connection conn = null;

    private static PreparedStatement ps = null;
    private static ResultSet rs = null;
    private static final CallableStatement cs = null;

    /**
     * 连接数据库
     * @return
     */
    public static Connection conn(String url,String username,String password) {
        Connection conn = null;
        try {
            Class.forName(driver);  //加载数据库驱动
            try {
                conn = DriverManager.getConnection(url, username, password);  //连接数据库
            } catch (SQLException e) {
                e.printStackTrace();
            }
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        }
        return conn;
    }

    /**
     * 关闭数据库链接
     * @return
     */
    public static void close() {
        if(conn != null) {
            try {
                conn.close();  //关闭数据库链接
            } catch (SQLException e) {
                e.printStackTrace();
            }
        }
    }
}

2.2.2.CommonUtils

java 复制代码
@Slf4j
public class CommonUtils {
    public static StreamExecutionEnvironment setCheckpoint(StreamExecutionEnvironment env) throws IOException {
//        ConfigTools.initConf("local");
        Map hdfsMap = (Map) ConfigTools.mapConf.get("hdfs");
        env.enableCheckpointing(((Integer) hdfsMap.get("checkpointing")).longValue(), CheckpointingMode.EXACTLY_ONCE);//这里会造成offset提交的延迟
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(((Integer) hdfsMap.get("minPauseBetweenCheckpoints")).longValue());
        env.getCheckpointConfig().setCheckpointTimeout(((Integer) hdfsMap.get("checkpointTimeout")).longValue());
        env.getCheckpointConfig().setMaxConcurrentCheckpoints((Integer) hdfsMap.get("maxConcurrentCheckpoints"));
        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
        env.setRestartStrategy(RestartStrategies.fixedDelayRestart(
                (Integer) hdfsMap.get("restartStrategy"), // 尝试重启的次数,不宜过小,分布式任务很容易出问题(正常情况),建议3-5次
                Time.of(((Integer) hdfsMap.get("restartInterval")).longValue(), TimeUnit.SECONDS) // 延时
        ));
        //设置可容忍的检查点失败数,默认值为0表示不允许容忍任何检查点失败
        env.getCheckpointConfig().setTolerableCheckpointFailureNumber(2);

        //设置状态后端存储方式
        env.setStateBackend(new RocksDBStateBackend((String) hdfsMap.get("checkPointPath"), true));
//        env.setStateBackend(new FsStateBackend((String) hdfsMap.get("checkPointPath"), true));
//        env.setStateBackend(new HashMapStateBackend(());
        return env;
    }

    public static FlinkKafkaConsumer<ConsumerRecord<String, String>> getKafkaConsumer(Map<String, Object> kafkaConf) throws IOException {
        String[] topics = ((String) kafkaConf.get("topics")).split(",");
        log.info("监听的topic: {}", topics);
        Properties properties = new Properties();
        Map<String, String> kafkaProp = (Map<String, String>) kafkaConf.get("prop");
        for (String key : kafkaProp.keySet()) {
            properties.setProperty(key, kafkaProp.get(key).toString());
        }

        if (!StringUtils.isBlank((String) kafkaProp.get("isKerberized")) && "1".equals(kafkaProp.get("isKerberized"))) {
            System.setProperty("java.security.krb5.conf", kafkaProp.get("krb5Conf"));
            properties.put("security.protocol", kafkaProp.get("security_protocol"));
            properties.put("sasl.jaas.config", "com.sun.security.auth.module.Krb5LoginModule required "
                    + "useTicketCache=" + kafkaProp.get("useTicketCache") + " "

                    + "serviceName=\"" + kafkaProp.get("serviceName") + "\" "
                    + "useKeyTab=true "
                    + "keyTab=\"" + kafkaProp.get("keytab").toString() + "\" "
                    + "principal=\"" + kafkaProp.get("principal").toString() + "\";");
        }

        properties.put("key.serializer", "org.apache.flink.kafka.shaded.org.apache.kafka.common.serialization.ByteArrayDeserializer");
        properties.put("value.serializer", "org.apache.flink.kafka.shaded.org.apache.kafka.common.serialization.ByteArrayDeserializer");

        FlinkKafkaConsumer<ConsumerRecord<String, String>> consumerRecordFlinkKafkaConsumer = new FlinkKafkaConsumer<ConsumerRecord<String, String>>(Arrays.asList(topics), new KafkaDeserializationSchema<ConsumerRecord<String, String>>() {
            @Override
            public TypeInformation<ConsumerRecord<String, String>> getProducedType() {
                return TypeInformation.of(new TypeHint<ConsumerRecord<String, String>>() {
                });
            }

            @Override
            public boolean isEndOfStream(ConsumerRecord<String, String> stringStringConsumerRecord) {
                return false;
            }

            @Override
            public ConsumerRecord<String, String> deserialize(ConsumerRecord<byte[], byte[]> record) throws Exception {
                return new ConsumerRecord<String, String>(
                        record.topic(),
                        record.partition(),
                        record.offset(),
                        record.timestamp(),
                        record.timestampType(),
                        record.checksum(),
                        record.serializedKeySize(),
                        record.serializedValueSize(),
                        new String(record.key() == null ? "".getBytes(StandardCharsets.UTF_8) : record.key(), StandardCharsets.UTF_8),
                        new String(record.value() == null ? "{}".getBytes(StandardCharsets.UTF_8) : record.value(), StandardCharsets.UTF_8));
            }
        }, properties);
        return consumerRecordFlinkKafkaConsumer;
    }
}

2.3.conf

2.3.1.ConfigTools

java 复制代码
@Slf4j
public class ConfigTools {

    public static Map<String, Object> mapConf;

    /**
     * 获取对应的配置文件
     *
     * @param option
     */
    public static void initConf(String option) {
        String confFile = "/flink_backup_" + option + ".yml";
        try {
            InputStream dumpFile = ConfigTools.class.getResourceAsStream(confFile);
            mapConf = Yaml.loadType(dumpFile, HashMap.class);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 获取对应的配置文件
     *
     * @param option
     */
    public static void initMySqlConf(String option, Class clazz) {
        String className = clazz.getName();
        String confFile = "/appconfig.yml";
        Map<String, String> mysqlConf;
        try {
            InputStream dumpFile = ConfigTools.class.getResourceAsStream(confFile);
            mysqlConf = Yaml.loadType(dumpFile, HashMap.class);
            String username = mysqlConf.get("mysql.username");
            String password = mysqlConf.get("mysql.password");
            String url = mysqlConf.get("mysql.url");
            Connection conn = DBConn.conn(url, username, password);
            Map<String, Object> config = getConfig(conn, className, option);

            if (config == null || config.size() == 0) {
                log.error("获取配置文件失败");
                return;
            }

            mapConf = config;

        } catch (Exception e) {
            e.printStackTrace();
        }

    }

    private static Map<String, Object> getConfig(Connection conn, String className, String option) throws SQLException {
        PreparedStatement preparedStatement = null;
        try {
            String sql = "select config_context from app_config where app_name = '%s' and config_name = '%s'";
            preparedStatement = conn.prepareStatement(String.format(sql, className, option));

            ResultSet rs = preparedStatement.executeQuery();

            Map<String, String> map = new LinkedHashMap<>();

            String config_context = "";
            while (rs.next()) {
                config_context = rs.getString("config_context");
            }
            System.out.println("配置信息config_context:"+config_context);
//            if(StringUtils.isNotBlank(config_context)){
//                System.out.println(JSONObject.toJSONString(JSONObject.parseObject(config_context), SerializerFeature.PrettyFormat));
//            }
            Map<String, Object> mysqlConfMap = JSON.parseObject(config_context, Map.class);
            return mysqlConfMap;
        }finally {
            if (preparedStatement != null) {
                preparedStatement.close();
            }
            if (conn != null) {
                conn.close();
            }
        }
    }

    public static void main(String[] args) {
//        initMySqlConf("local", TboxPeriodBackoutA3K.class);
        initConf("local");
        String s = JSON.toJSONString(mapConf);
        System.out.println(s);
    }
}

2.4.po

2.4.1.SchemaPo

java 复制代码
/**
 * 字段属性对象
 */
@Data
@AllArgsConstructor
@NoArgsConstructor
public class SchemaPo implements Serializable {
    private String signal;
    private String type;
}

2.5.kafka2hive

2.5.1.Kafka2Hive-ODS

从 Kafka 中获取到的数据不做任何处理直接写入到 Hive 的 ODS 层

java 复制代码
public class Kafka2Hive_ODS {

    public static Logger logger = Logger.getLogger(Kafka2Hive_ODS.class);
    
    public static void main(String[] args) throws Exception {
        ConfigTools.initMySqlConf(args[0], AcpBackoutAll_X9E_ORIGINAL.class);
        Map<String, Object> mapConf = ConfigTools.mapConf;
        Map<String, Object> kafkaConsumerConf = (Map<String, Object>) mapConf.get("kafka-consumer");
        Map<String, Object> hiveConf = (Map<String, Object>) mapConf.get("hive");


        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().disableOperatorChaining();

        CommonUtils.setCheckpoint(env);

        EnvironmentSettings fsSettings = EnvironmentSettings
                .newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, fsSettings);
        StreamStatementSet statementSet = tableEnv.createStatementSet();

        // 使用Hive的sql方言
        tableEnv.getConfig().setSqlDialect(SqlDialect.HIVE);
        //自定义一个名字(没有限制随意取)
        String name = "myhive";
        //这里需要配置hive表中的默认库(不是mysql的hive元数据库)
        String defaultDatabase = "ods";
        //hive-site.xml文件目录
        String hiveConfDir = (String) hiveConf.get("hiveConfDir");
        //创建HiveCatalog
        HiveCatalog hive = new HiveCatalog(name, defaultDatabase, hiveConfDir, "3.1.2");
        //注册HiveCatalog
        tableEnv.registerCatalog("myhive", hive);
        //使用HiveCatalog
        tableEnv.useCatalog("myhive");


//        FlinkKafkaConsumer<String> myConsumer = CommonUtils.getKafkaConsumer();
        FlinkKafkaConsumer<ConsumerRecord<String, String>> myConsumer = CommonUtils.getKafkaConsumer(kafkaConsumerConf);
        DataStream<ConsumerRecord<String, String>> stream = env.addSource(myConsumer);

        String tableName = (String) hiveConf.get("tableName");

        List<FieldSchema> schemas = hive.getHiveTable(new ObjectPath(defaultDatabase, tableName)).getSd().getCols();
        List<FieldSchema> partitionKeys = hive.getHiveTable(new ObjectPath(defaultDatabase, tableName)).getPartitionKeys();
        schemas.addAll(partitionKeys);

        List<SchemaPo> schemaPos = new ArrayList<>();
        List<String> fieldLists = new ArrayList<>();
        List<TypeInformation> typeList = new ArrayList<>();
        for (FieldSchema schema : schemas) {
            SchemaPo schemaPo = new SchemaPo();
            schemaPo.setSignal(schema.getName());
            schemaPo.setType(schema.getType());
            schemaPos.add(schemaPo);
            fieldLists.add(schema.getName());
            String type = schema.getType();
            if (type.equalsIgnoreCase("bigint")) {
                typeList.add(Types.LONG);
            } else {
                typeList.add(Types.STRING);
            }
        }

        String[] fieldNames = fieldLists.toArray(new String[fieldLists.size()]);
        TypeInformation[] types = typeList.toArray(new TypeInformation[typeList.size()]);

        SingleOutputStreamOperator<Row> originalRow = stream.flatMap(new KafkaMsgFormatFunction(schemaPos), new RowTypeInfo(types, fieldNames)).uid("ORIGINAL");

        tableEnv.createTemporaryView("originalRow", originalRow);
        StringBuilder sql = new StringBuilder();
        tableEnv.executeSql("alter table table_name set TBLPROPERTIES ('sink.partition-commit.policy.kind'='metastore')");
        sql.append("insert into `table_name` select ");
        sql.append(" * ");
        sql.append(" from `myhive`.`ods`.originalRow");
        tableEnv.executeSql(sql.toString());
//        env.execute();
    }


    static class KafkaMsgFormatFunction extends RichFlatMapFunction<ConsumerRecord<String,String>, Row> {

        private List<SchemaPo> schemaPos;

        public KafkaMsgFormatFunction(List<SchemaPo> schemaPos) {
            this.schemaPos = schemaPos;
        }

        @Override
        public void open(Configuration parameters) {
        
        }

        @Override
        public void flatMap(ConsumerRecord<String,String> record, Collector<Row> out) {
            String key = null;
            try {
                HashMap<String, Object> infoMap = JSON.parseObject((String) record.value(), HashMap.class);
                
                for (String signalkey : infoMap.keySet()) {
                    resultMap.put(signalkey.toLowerCase(), String.valueOf(infoMap.get(signalkey)));
                }

                Row row = new Row(schemaPos.size());
                for (int i = 0; i < schemaPos.size(); i++) {
                    SchemaPo schemaPo = schemaPos.get(i);
                    String v = resultMap.get(schemaPo.getSignal());
                    if (StringUtils.isBlank(v)) {
                        row.setField(i, null);
                        continue;
                    }
                    if ("bigint".equalsIgnoreCase(schemaPo.getType())) {
                        Long svalue = Long.valueOf(resultMap.get(schemaPo.getSignal()));
                        row.setField(i, svalue);
                    } else {
                        String svalue = resultMap.get(schemaPo.getSignal());
                        row.setField(i, svalue);
                    }
                }
                out.collect(row);
            } catch (Exception e) {
            	e.printStackTrace();
            }
        }
    }
}
相关推荐
桑榆08061 小时前
Kafka简介
spark·kafka
24k小善1 小时前
Flink TaskManager详解
java·大数据·flink·云计算
IT成长日记2 小时前
【Hive入门】Hive数据导出完全指南:从HDFS到本地文件系统的专业实践
hive·hadoop·hdfs·数据导出
IT成长日记3 小时前
【Hive入门】Hive概述:大数据时代的数据仓库桥梁
大数据·数据仓库·hive·sql优化·分布式计算
xmyLydia3 小时前
🚀 封装通用线程池 + Prometheus 可视化任务耗时与成功率(实战记录)
kafka·数据可视化
K8sCat3 小时前
Golang与Kafka的五大核心设计模式
后端·kafka·go
企鹅不耐热.4 小时前
KafkaSpark-Streaming
kafka
Flink_China4 小时前
抖音集团电商流量实时数仓建设实践
大数据·flink
机智的人猿泰山12 小时前
java kafka
java·开发语言·kafka
IT成长日记15 小时前
【Hive入门】Hive查询语言(DQL)完全指南:从基础查询到高级分析
数据仓库·hive·hadoop·dql操作