Flink和Kafka连接时的精确一次保证

端到端的精确一次性保证

既然是端到端的exactly-once,我们可以从三个组件的角度来进行分析:

(1)Flink内部

Flink内部可以通过检查点机制保证状态和处理结果的exactly-once语义。

(2)输入端

输入数据源端的Kafka可以对数据进行持久化保存,并可以重置偏移量(offset)。所以我们可以在Source任务(FlinkKafkaConsumer)中将当前读取的偏移量保存为算子状态,写入到检查点中;当发生故障时,从检查点中读取恢复状态,并由连接器FlinkKafkaConsumer向Kafka重新提交偏移量,就可以重新消费数据、保证结果的一致性了。

(3)输出端

输出端保证exactly-once的最佳实现,当然就是两阶段提交(2PC)。作为与Flink天生一对的Kafka,自然需要用最强有力的一致性保证来证明自己。

也就是说,我们写入Kafka的过程实际上是一个两段式的提交:处理完毕得到结果,写入Kafka时是基于事务的"预提交";等到检查点保存完毕,才会提交事务进行"正式提交"。如果中间出现故障,事务进行回滚,预提交就会被放弃;恢复状态之后,也只能恢复所有已经确认提交的操作。

整体流程

相关推荐
yumgpkpm1 小时前
CMP平台(类Cloudera CDP7.3)在华为鲲鹏的Aarch64信创环境中的性能表现
大数据·flink·kafka·big data·flume·cloudera
大数据CLUB1 小时前
基于spark的抖音短视频数据分析及可视化
大数据·hadoop·分布式·数据分析·spark
一键三联啊1 小时前
【GIT】错误集锦及解决方案
大数据·elasticsearch·搜索引擎
武子康2 小时前
大数据-124 - Flink State:Keyed State、Operator State KeyGroups 工作原理 案例解析
大数据·后端·flink
vxtkjzxt8883 小时前
手机群控软件在游戏运营中的行为模拟技术实践
大数据
铭毅天下3 小时前
Codebuddy 实现:云端 Elasticsearch 到 本地 Easysearch 跨集群迁移 Python 小工具
大数据·elasticsearch·搜索引擎·全文检索
青云交3 小时前
Java 大视界 -- Java 大数据在智慧交通自动驾驶仿真与测试数据处理中的应用
java·大数据·自动驾驶·数据存储·算法优化·智慧交通·测试数据处理
观远数据4 小时前
A Blueberry 签约观远数据,观远BI以一站式现代化驱动服饰企业新增长
大数据·数据库·人工智能·数据分析
缘华工业智维10 小时前
工业设备预测性维护:能源成本降低的“隐藏钥匙”?
大数据·网络·人工智能
NewsMash10 小时前
马来西亚代表团到访愿景娱乐 共探TikTok直播电商增长新路径
大数据·娱乐