Flink和Kafka连接时的精确一次保证

端到端的精确一次性保证

既然是端到端的exactly-once,我们可以从三个组件的角度来进行分析:

(1)Flink内部

Flink内部可以通过检查点机制保证状态和处理结果的exactly-once语义。

(2)输入端

输入数据源端的Kafka可以对数据进行持久化保存,并可以重置偏移量(offset)。所以我们可以在Source任务(FlinkKafkaConsumer)中将当前读取的偏移量保存为算子状态,写入到检查点中;当发生故障时,从检查点中读取恢复状态,并由连接器FlinkKafkaConsumer向Kafka重新提交偏移量,就可以重新消费数据、保证结果的一致性了。

(3)输出端

输出端保证exactly-once的最佳实现,当然就是两阶段提交(2PC)。作为与Flink天生一对的Kafka,自然需要用最强有力的一致性保证来证明自己。

也就是说,我们写入Kafka的过程实际上是一个两段式的提交:处理完毕得到结果,写入Kafka时是基于事务的"预提交";等到检查点保存完毕,才会提交事务进行"正式提交"。如果中间出现故障,事务进行回滚,预提交就会被放弃;恢复状态之后,也只能恢复所有已经确认提交的操作。

整体流程

相关推荐
Evaporator Core42 分钟前
通信专业技术资格考试备战系列(一):通信基础知识核心要点解析
大数据·tornado
freepopo1 小时前
比较好的别墅装修策略
大数据
实战产品说6 小时前
2026出海产品的机会与挑战
大数据·人工智能·产品运营·产品经理
2501_926978336 小时前
从Prompt的“结构-参数”到多AI的“协作-分工”--底层逻辑的同构分化
大数据·人工智能·机器学习
教男朋友学大模型6 小时前
平衡AI自动化与人工干预
大数据·人工智能·自动化
渣瓦攻城狮7 小时前
互联网大厂Java面试实战:核心技术与场景分析
java·大数据·redis·spring·微服务·面试·技术分享
Elastic 中国社区官方博客8 小时前
Elasticsearch:通过最小分数确保语义精度
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
狮子座明仔8 小时前
DeepImageSearch:当图像检索需要“侦探式推理“,现有AI还差多远?
大数据·人工智能·语言模型
十月南城8 小时前
Kafka生态深化——Schema与Connect、CDC入湖的链路与一致性挑战
分布式·kafka
追风少年ii8 小时前
CosMx文献分享--空间同型聚类对癌细胞可塑性的抑制
大数据·数据挖掘·数据分析·空间·单细胞