Flink和Kafka连接时的精确一次保证

端到端的精确一次性保证

既然是端到端的exactly-once,我们可以从三个组件的角度来进行分析:

(1)Flink内部

Flink内部可以通过检查点机制保证状态和处理结果的exactly-once语义。

(2)输入端

输入数据源端的Kafka可以对数据进行持久化保存,并可以重置偏移量(offset)。所以我们可以在Source任务(FlinkKafkaConsumer)中将当前读取的偏移量保存为算子状态,写入到检查点中;当发生故障时,从检查点中读取恢复状态,并由连接器FlinkKafkaConsumer向Kafka重新提交偏移量,就可以重新消费数据、保证结果的一致性了。

(3)输出端

输出端保证exactly-once的最佳实现,当然就是两阶段提交(2PC)。作为与Flink天生一对的Kafka,自然需要用最强有力的一致性保证来证明自己。

也就是说,我们写入Kafka的过程实际上是一个两段式的提交:处理完毕得到结果,写入Kafka时是基于事务的"预提交";等到检查点保存完毕,才会提交事务进行"正式提交"。如果中间出现故障,事务进行回滚,预提交就会被放弃;恢复状态之后,也只能恢复所有已经确认提交的操作。

整体流程

相关推荐
lang2015092840 分钟前
Kafka元数据缓存机制深度解析
分布式·缓存·kafka
西格电力科技1 小时前
面向工业用户的绿电直连架构适配技术:高可靠与高弹性的双重设计
大数据·服务器·人工智能·架构·能源
qq_343247032 小时前
单机版认证kafka
数据库·分布式·kafka
pingzhuyan2 小时前
微服务: springboot整合kafka实现消息的简单收发(上)
spring boot·微服务·kafka
beijingliushao2 小时前
105-Spark之Standalone HA环境搭建过程
大数据·spark
五阿哥永琪3 小时前
Git 开发常用命令速查手册
大数据·git·elasticsearch
数字会议深科技3 小时前
深科技 | 高端会议室效率升级指南:无纸化会议系统的演进与价值
大数据·人工智能·会议系统·无纸化·会议系统品牌·综合型系统集成商·会议室
容智信息3 小时前
容智Report Agent智能体驱动财务自动化,从核算迈向价值创造
大数据·运维·人工智能·自然语言处理·自动化·政务
神算大模型APi--天枢6464 小时前
全栈自主可控:国产算力平台重塑大模型后端开发与部署生态
大数据·前端·人工智能·架构·硬件架构
每日学点SEO5 小时前
「网站新页面冲进前10名成功率下降69%」:2025 年SEO竞争格局分析
大数据·数据库·人工智能·搜索引擎·chatgpt