Flink和Kafka连接时的精确一次保证

端到端的精确一次性保证

既然是端到端的exactly-once,我们可以从三个组件的角度来进行分析:

(1)Flink内部

Flink内部可以通过检查点机制保证状态和处理结果的exactly-once语义。

(2)输入端

输入数据源端的Kafka可以对数据进行持久化保存,并可以重置偏移量(offset)。所以我们可以在Source任务(FlinkKafkaConsumer)中将当前读取的偏移量保存为算子状态,写入到检查点中;当发生故障时,从检查点中读取恢复状态,并由连接器FlinkKafkaConsumer向Kafka重新提交偏移量,就可以重新消费数据、保证结果的一致性了。

(3)输出端

输出端保证exactly-once的最佳实现,当然就是两阶段提交(2PC)。作为与Flink天生一对的Kafka,自然需要用最强有力的一致性保证来证明自己。

也就是说,我们写入Kafka的过程实际上是一个两段式的提交:处理完毕得到结果,写入Kafka时是基于事务的"预提交";等到检查点保存完毕,才会提交事务进行"正式提交"。如果中间出现故障,事务进行回滚,预提交就会被放弃;恢复状态之后,也只能恢复所有已经确认提交的操作。

整体流程

相关推荐
mit6.82417 分钟前
[es自动化更新] Updatecli编排配置.yaml | dockerfilePath值文件.yml
大数据·elasticsearch·搜索引擎·自动化
Jinkxs21 分钟前
Elasticsearch 简介
大数据·elasticsearch·搜索引擎
亮学长2 小时前
lodash不支持 Tree Shaking 而 lodash-es可以
大数据·前端·elasticsearch
risc1234562 小时前
Elasticsearch 线程池
java·大数据·elasticsearch
树谷-胡老师2 小时前
1965–2022年中国大陆高分辨率分部门用水数据集,包含:灌溉用水、工业制造用水、生活用水和火电冷却
大数据·数据库·arcgis
TDengine (老段)4 小时前
TDengine 集群部署及启动、扩容、缩容常见问题与解决方案
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
青云交6 小时前
Java 大视界 -- Java 大数据机器学习模型在电商用户复购行为预测与客户关系维护中的应用(343)
java·大数据·机器学习·数据安全·电商复购·地域适配·边疆电商
贝塔西塔6 小时前
PySpark中python环境打包和JAR包依赖
大数据·开发语言·python·spark·jar·pyspark
保持学习ing7 小时前
day4--上传图片、视频
java·大数据·数据库·文件上传·minio·分布式文件系统·文件存储
jiuweiC7 小时前
spark3 streaming 读kafka写es
elasticsearch·kafka·linq