Flink和Kafka连接时的精确一次保证

端到端的精确一次性保证

既然是端到端的exactly-once,我们可以从三个组件的角度来进行分析:

(1)Flink内部

Flink内部可以通过检查点机制保证状态和处理结果的exactly-once语义。

(2)输入端

输入数据源端的Kafka可以对数据进行持久化保存,并可以重置偏移量(offset)。所以我们可以在Source任务(FlinkKafkaConsumer)中将当前读取的偏移量保存为算子状态,写入到检查点中;当发生故障时,从检查点中读取恢复状态,并由连接器FlinkKafkaConsumer向Kafka重新提交偏移量,就可以重新消费数据、保证结果的一致性了。

(3)输出端

输出端保证exactly-once的最佳实现,当然就是两阶段提交(2PC)。作为与Flink天生一对的Kafka,自然需要用最强有力的一致性保证来证明自己。

也就是说,我们写入Kafka的过程实际上是一个两段式的提交:处理完毕得到结果,写入Kafka时是基于事务的"预提交";等到检查点保存完毕,才会提交事务进行"正式提交"。如果中间出现故障,事务进行回滚,预提交就会被放弃;恢复状态之后,也只能恢复所有已经确认提交的操作。

整体流程

相关推荐
Gofarlic_oms14 分钟前
集中式 vs 分布式许可:跨地域企业的管控架构选择
大数据·运维·人工智能·分布式·架构·数据挖掘·需求分析
遥感学习森14 分钟前
滑雪场分布API及滑雪预报服务API
大数据·人工智能·天气api
code bean16 分钟前
【AI】RAG智能问答的三层优化策略
大数据·人工智能·rag
泰迪智能科技33 分钟前
分享|陕西高校大数据人工智能实验室建设内容+建设成效
大数据·人工智能
TOWE technology38 分钟前
智联电力基石:从运维视角看数据中心PDU的演进与未来
大数据·人工智能·数据中心·pdu·智能pdu·定制电源管理·idc数据中心
KJYHS1 小时前
亚马逊新手运营:AI 找竞品实操指南
大数据·人工智能
萤丰信息1 小时前
数智重构生态:智慧园区引领城市高质量发展新范式
java·大数据·人工智能·安全·智慧城市
叮咚侠1 小时前
Ubuntu 24.04.3 LTS系统中Elasticsearch 8.14.0+kibana 8.14.0集群部署搭建
大数据·ubuntu·elasticsearch·搜索引擎·集群·kibana
建群新人小猿2 小时前
陀螺匠企业助手 运行环境
java·大数据·人工智能·docker·php
容智信息2 小时前
容智信息加入大模型产业联盟,Hyper Agent推动企业级智能体规模化落地
大数据·人工智能·自然语言处理·自动驾驶