二分查找法详解(6种变形)

前言

在之前的博客中,我给大家介绍了最基础的二分查找法(没学的话点我点我!

今天我将带大家学习二分法的六种变形如何使用,小伙伴们,快来开始今天的学习吧!

文章目录

  • [1,查找第一个(从左到右)= 目标值的,若不存在返回 -1](#1,查找第一个(从左到右)= 目标值的,若不存在返回 -1)
  • [2,查找第一个 >= 目标值的](#2,查找第一个 >= 目标值的)
  • [3,查找第一个 > 目标值的](#3,查找第一个 > 目标值的)
  • [4,查找最后一个 = 目标值的 ,若不存在返回- 1](#4,查找最后一个 = 目标值的 ,若不存在返回- 1)
  • [5,查找最后一个 <= 目标值的](#5,查找最后一个 <= 目标值的)
  • [6,查找最后一个 < 目标值的](#6,查找最后一个 < 目标值的)
  • 总结

1,查找第一个(从左到右)= 目标值的,若不存在返回 -1

与原版二分法其实差不多,当一个数组中有重复的目标值时,使用该方法可以找到从左到右第一个等于目标值的下标。

因为我们要找的是第一个等于目标值的下标,那我们不仅仅在arr[mid] > key时去左边找,在arr[mid]>= key我们也要去找,因为我们需要要最左边等于目标值的下标。
注意事项

最后我们要判断left是否越界(left 有可能等于数组元素的个数),而且最后arr[left]是否等于要找的key。

代码:

c 复制代码
int efcz(int* arr, int key,int left,int right)
{
 int len = right+1;//数组长度(元素个数)
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] >= key)
		{
			right = mid - 1;
		}
		if (arr[mid] < key)
		{
			left = mid + 1;
		}
	}
	if (left < len&&arr[left] != key)//判断一下是否找到元素
		return -1;
	else
		return left;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,5,6 };//创建数组
	int key = 5;//目标值为5
	int left = 0;//设置左右起点
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key,left,right));//进入二分查找函数
	return 0;
}

2,查找第一个 >= 目标值的

这次我们需要查找第一个大于等于目标值的下标,这次我们不需要判断left越界,如果越界就说明没有找到,说明整个数组都比目标值要小。

代码:

c 复制代码
//思路和第一种一样,我就不加注释了,如果不懂可以私信问我
int efcz(int* arr, int key, int left, int right)
{
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] >= key)
		{
			right = mid - 1;
		}
		if (arr[mid] < key)
		{
			left = mid + 1;
		}
	}
		return left;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,6,8 };
	int key = 7;
	int left = 0;
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key, left, right));
	return 0;
}

3,查找第一个 > 目标值的

这次我们需要查找第一个大于目标值的下标,这次我们同样不需要判断left越界,如果越界就说明没有找到,说明整个数组都比目标值要小。

另外我们需要改变一下函数内部的判断条件,当arr[mid] <= key时,left = mid + 1

因为我们不是要找相等的,是要找大于目标值的。

代码:

c 复制代码
//思路和第一种一样,我就不加注释了,如果不懂可以私信问我
int efcz(int* arr, int key, int left, int right)
{
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] > key)
		{
			right = mid - 1;
		}
		if (arr[mid] <= key)
		{
			left = mid + 1;
		}
	}
	return left;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,6,8 };
	int key = 5;
	int left = 0;
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key, left, right));
	return 0;
}

4,查找最后一个 = 目标值的 ,若不存在返回- 1

因为我们要找的是第一个等于目标值的下标,那我们不仅仅在arr[mid] < key时去右边找,在arr[mid]>= key我们也要去找,因为我们需要要最右边边等于目标值的下标。
注意事项

最后我们要判断right是否越界(right 有可能等于-1),而且最后arr[right]是否等于要找的key。

代码:

c 复制代码
//思路和第一种一样,我就不加注释了,如果不懂可以私信问我
int efcz(int* arr, int key, int left, int right)
{
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] > key)
		{
			right = mid - 1;
		}
		if (arr[mid] <= key)
		{
			left = mid + 1;
		}
	}
	if (right >= 0 && arr[right] == key)//判断是否找到
		return right;
	else
		return -1;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,6,8 };
	int key = 5;
	int left = 0;
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key, left, right));
	return 0;
}

5,查找最后一个 <= 目标值的

这次我们需要查找第一个小于等于目标值的下标,这次我们不需要判断right越界,如果越界就说明没有找到,说明整个数组都比目标值要大。

代码:

c 复制代码
//思路和第一种一样,我就不加注释了,如果不懂可以私信问我
int efcz(int* arr, int key, int left, int right)
{
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] > key)
		{
			right = mid - 1;
		}
		if (arr[mid] <= key)
		{
			left = mid + 1;
		}
	}
		return right;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,6,8 };
	int key = 4;
	int left = 0;
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key, left, right));
	return 0;
}

6,查找最后一个 < 目标值的

这次我们需要查找第一个小于目标值的下标,这次我们同样不需要判断right越界,如果越界就说明没有找到,说明整个数组都比目标值要大。

另外我们也需要改变一下函数内部的判断条件,当arr[mid] >= key时,right = mid - 1,因为我们不是要找相等的,是要找小于目标值的。

代码:

c 复制代码
//思路和第一种一样,我就不加注释了,如果不懂可以私信问我
int efcz(int* arr, int key, int left, int right)
{
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] >= key)
		{
			right = mid - 1;
		}
		if (arr[mid] < key)
		{
			left = mid + 1;
		}
	}
	return right;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,6,8 };
	int key = 5;
	int left = 0;
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key, left, right));
	return 0;
}

总结

我认为可以分两组记忆这六种变形,前三组一类,后三组一类,前三组都是返回left,后三组都是返回right,同时我们会发现,第一种和第四种,第二种和第五种,第三种和第六种都十分的相似,所以自己练练就能掌握,而且不容易忘记,本期的分享就到这里,如果觉得博主讲的不错的话,千万不要忘记给博主一个关注,点赞,收藏哦~,小伙伴们,我们下期再见!

相关推荐
聚客AI12 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v14 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工16 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农17 小时前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了18 小时前
AcWing学习——双指针算法
c++·算法
moonlifesudo18 小时前
322:零钱兑换(三种方法)
算法
NAGNIP1 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja2 天前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下2 天前
最终的信号类
开发语言·c++·算法