0.618算法和基于Armijo准则的线搜索回退法

0.618代码如下:

import math

# 定义函数 h(t) = t^3 - 2t + 1

def h(t):

return t**3 - 2*t + 1

# 0.618 算法

def golden_section_search(a, b, epsilon):

ratio = 0.618

while (b - a) > epsilon:

x1 = b - ratio * (b - a)

x2 = a + ratio * (b - a)

h_x1 = h(x1)

h_x2 = h(x2)

if h_x1 < h_x2:

b = x2

else:

a = x1

return a # 或者返回 b ,因为它们的值非常接近

# t 大于等于 0 的范围内进行搜索

t_min_618 = golden_section_search(0, 3, 0.001)

print("0.618 算法找到的最小值: ", h(t_min_618))

基于Armijo准则的线搜索回退法代码如下:

import numpy as np

def h(t):

return t**3 - 2*t + 1

def h_derivative(t):

return 3*t**2 - 2

def armijo_line_search(t_current, direction, alpha, beta, c1):

t = t_current

step_size = 1.0

while True:

if h(t + direction * step_size) <= h(t) + alpha * step_size * direction * h_derivative(t):

return t + direction * step_size

else:

step_size *= beta

if np.abs(step_size) < 1e-6:

break

return None

def gradient_descent(start, end, alpha, beta, c1, epsilon):

t = start

while True:

if t > end:

break

direction = -h_derivative(t) # 负梯度方向

next_t = armijo_line_search(t, direction, alpha, beta, c1)

if next_t is None or np.abs(h_derivative(next_t)) <= epsilon:

return next_t

t = next_t

return None

# 参数设置

alpha = 0.1 # Armijo 准则中的参数 alpha

beta = 0.5 # Armijo 准则中的参数 beta

c1 = 1e-4 # 自定义参数,用于控制 Armijo 条件的满足程度

epsilon = 1e-6 # 梯度范数的终止条件

# 搜索区间为 [0,3]

start = 0

end = 3

# 执行梯度下降算法,求得近似最小值点

t_min = gradient_descent(start, end, alpha, beta, c1, epsilon)

print(" 求得的最小值点为 :", t_min)

print(" 最小值点的函数值为 :", h(t_min))

相关推荐
小毅&Nora5 分钟前
【AI微服务】【Spring AI Alibaba】② Agent 深度实战:构建可记忆、可拦截、可流式的智能体系统
人工智能·微服务·spring-ai
陈天伟教授31 分钟前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习
千里念行客2401 小时前
昂瑞微正式启动科创板IPO发行
人工智能·科技·信息与通信·射频工程
撸码猿1 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
双翌视觉2 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中2 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海3 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
音视频牛哥3 小时前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
稚辉君.MCA_P8_Java3 小时前
Gemini永久会员 Java中的四边形不等式优化
java·后端·算法
稚辉君.MCA_P8_Java3 小时前
通义 插入排序(Insertion Sort)
数据结构·后端·算法·架构·排序算法