0.618算法和基于Armijo准则的线搜索回退法

0.618代码如下:

import math

# 定义函数 h(t) = t^3 - 2t + 1

def h(t):

return t**3 - 2*t + 1

# 0.618 算法

def golden_section_search(a, b, epsilon):

ratio = 0.618

while (b - a) > epsilon:

x1 = b - ratio * (b - a)

x2 = a + ratio * (b - a)

h_x1 = h(x1)

h_x2 = h(x2)

if h_x1 < h_x2:

b = x2

else:

a = x1

return a # 或者返回 b ,因为它们的值非常接近

# t 大于等于 0 的范围内进行搜索

t_min_618 = golden_section_search(0, 3, 0.001)

print("0.618 算法找到的最小值: ", h(t_min_618))

基于Armijo准则的线搜索回退法代码如下:

import numpy as np

def h(t):

return t**3 - 2*t + 1

def h_derivative(t):

return 3*t**2 - 2

def armijo_line_search(t_current, direction, alpha, beta, c1):

t = t_current

step_size = 1.0

while True:

if h(t + direction * step_size) <= h(t) + alpha * step_size * direction * h_derivative(t):

return t + direction * step_size

else:

step_size *= beta

if np.abs(step_size) < 1e-6:

break

return None

def gradient_descent(start, end, alpha, beta, c1, epsilon):

t = start

while True:

if t > end:

break

direction = -h_derivative(t) # 负梯度方向

next_t = armijo_line_search(t, direction, alpha, beta, c1)

if next_t is None or np.abs(h_derivative(next_t)) <= epsilon:

return next_t

t = next_t

return None

# 参数设置

alpha = 0.1 # Armijo 准则中的参数 alpha

beta = 0.5 # Armijo 准则中的参数 beta

c1 = 1e-4 # 自定义参数,用于控制 Armijo 条件的满足程度

epsilon = 1e-6 # 梯度范数的终止条件

# 搜索区间为 [0,3]

start = 0

end = 3

# 执行梯度下降算法,求得近似最小值点

t_min = gradient_descent(start, end, alpha, beta, c1, epsilon)

print(" 求得的最小值点为 :", t_min)

print(" 最小值点的函数值为 :", h(t_min))

相关推荐
Mapmost23 分钟前
【数据可视化艺术·实战篇】视频AI+人流可视化:如何让数据“动”起来?
人工智能·信息可视化·实时音视频·数字孪生·demo
_一条咸鱼_1 小时前
AI 大模型的 MCP 原理
人工智能·深度学习·面试
_一条咸鱼_1 小时前
AI 大模型 Function Calling 原理
人工智能·深度学习·面试
寰宇视讯1 小时前
金山科技在第91届中国国际医疗器械博览会CMEF 首发新品 展现智慧装备+AI
大数据·人工智能·科技
訾博ZiBo1 小时前
AI日报 - 2025年04月17日
人工智能
耿雨飞2 小时前
二、The Power of LLM Function Calling
人工智能·大模型
金能电力2 小时前
金能电力领跑京东工业安全工器具赛道 2025年首季度数据诠释“头部效应”
人工智能·安全·金能电力安全工器具
WSSWWWSSW2 小时前
神经网络如何表示数据
人工智能·深度学习·神经网络
多吃轻食2 小时前
Jieba分词的原理及应用(三)
人工智能·深度学习·自然语言处理·中文分词·分词·jieba·隐马尔可夫
独家回忆3642 小时前
每日算法-250415
算法