0.618算法和基于Armijo准则的线搜索回退法

0.618代码如下:

import math

# 定义函数 h(t) = t^3 - 2t + 1

def h(t):

return t**3 - 2*t + 1

# 0.618 算法

def golden_section_search(a, b, epsilon):

ratio = 0.618

while (b - a) > epsilon:

x1 = b - ratio * (b - a)

x2 = a + ratio * (b - a)

h_x1 = h(x1)

h_x2 = h(x2)

if h_x1 < h_x2:

b = x2

else:

a = x1

return a # 或者返回 b ,因为它们的值非常接近

# t 大于等于 0 的范围内进行搜索

t_min_618 = golden_section_search(0, 3, 0.001)

print("0.618 算法找到的最小值: ", h(t_min_618))

基于Armijo准则的线搜索回退法代码如下:

import numpy as np

def h(t):

return t**3 - 2*t + 1

def h_derivative(t):

return 3*t**2 - 2

def armijo_line_search(t_current, direction, alpha, beta, c1):

t = t_current

step_size = 1.0

while True:

if h(t + direction * step_size) <= h(t) + alpha * step_size * direction * h_derivative(t):

return t + direction * step_size

else:

step_size *= beta

if np.abs(step_size) < 1e-6:

break

return None

def gradient_descent(start, end, alpha, beta, c1, epsilon):

t = start

while True:

if t > end:

break

direction = -h_derivative(t) # 负梯度方向

next_t = armijo_line_search(t, direction, alpha, beta, c1)

if next_t is None or np.abs(h_derivative(next_t)) <= epsilon:

return next_t

t = next_t

return None

# 参数设置

alpha = 0.1 # Armijo 准则中的参数 alpha

beta = 0.5 # Armijo 准则中的参数 beta

c1 = 1e-4 # 自定义参数,用于控制 Armijo 条件的满足程度

epsilon = 1e-6 # 梯度范数的终止条件

# 搜索区间为 [0,3]

start = 0

end = 3

# 执行梯度下降算法,求得近似最小值点

t_min = gradient_descent(start, end, alpha, beta, c1, epsilon)

print(" 求得的最小值点为 :", t_min)

print(" 最小值点的函数值为 :", h(t_min))

相关推荐
hello_ejb31 小时前
聊聊Spring AI Alibaba的SentenceSplitter
人工智能·python·spring
JK0x072 小时前
代码随想录算法训练营 Day40 动态规划Ⅷ 股票问题
算法·动态规划
Feliz..2 小时前
关于离散化算法的看法与感悟
算法
水蓝烟雨3 小时前
1128. 等价多米诺骨牌对的数量
算法·hot 100
codists3 小时前
《算法导论(第4版)》阅读笔记:p11-p13
算法
摸鱼仙人~3 小时前
机器学习常用评价指标
人工智能·机器学习
一点.点3 小时前
WiseAD:基于视觉-语言模型的知识增强型端到端自动驾驶——论文阅读
人工智能·语言模型·自动驾驶
fanstuck4 小时前
从知识图谱到精准决策:基于MCP的招投标货物比对溯源系统实践
人工智能·知识图谱
dqsh064 小时前
树莓派5+Ubuntu24.04 LTS串口通信 保姆级教程
人工智能·python·物联网·ubuntu·机器人
Kidddddult5 小时前
力扣刷题Day 43:矩阵置零(73)
算法·leetcode·力扣