0.618算法和基于Armijo准则的线搜索回退法

0.618代码如下:

import math

# 定义函数 h(t) = t^3 - 2t + 1

def h(t):

return t**3 - 2*t + 1

# 0.618 算法

def golden_section_search(a, b, epsilon):

ratio = 0.618

while (b - a) > epsilon:

x1 = b - ratio * (b - a)

x2 = a + ratio * (b - a)

h_x1 = h(x1)

h_x2 = h(x2)

if h_x1 < h_x2:

b = x2

else:

a = x1

return a # 或者返回 b ,因为它们的值非常接近

# t 大于等于 0 的范围内进行搜索

t_min_618 = golden_section_search(0, 3, 0.001)

print("0.618 算法找到的最小值: ", h(t_min_618))

基于Armijo准则的线搜索回退法代码如下:

import numpy as np

def h(t):

return t**3 - 2*t + 1

def h_derivative(t):

return 3*t**2 - 2

def armijo_line_search(t_current, direction, alpha, beta, c1):

t = t_current

step_size = 1.0

while True:

if h(t + direction * step_size) <= h(t) + alpha * step_size * direction * h_derivative(t):

return t + direction * step_size

else:

step_size *= beta

if np.abs(step_size) < 1e-6:

break

return None

def gradient_descent(start, end, alpha, beta, c1, epsilon):

t = start

while True:

if t > end:

break

direction = -h_derivative(t) # 负梯度方向

next_t = armijo_line_search(t, direction, alpha, beta, c1)

if next_t is None or np.abs(h_derivative(next_t)) <= epsilon:

return next_t

t = next_t

return None

# 参数设置

alpha = 0.1 # Armijo 准则中的参数 alpha

beta = 0.5 # Armijo 准则中的参数 beta

c1 = 1e-4 # 自定义参数,用于控制 Armijo 条件的满足程度

epsilon = 1e-6 # 梯度范数的终止条件

# 搜索区间为 [0,3]

start = 0

end = 3

# 执行梯度下降算法,求得近似最小值点

t_min = gradient_descent(start, end, alpha, beta, c1, epsilon)

print(" 求得的最小值点为 :", t_min)

print(" 最小值点的函数值为 :", h(t_min))

相关推荐
前端世界4 小时前
HarmonyOS 数据处理性能优化:算法 + 异步 + 分布式实战
算法·性能优化·harmonyos
楼田莉子4 小时前
C++算法专题学习:栈相关的算法
开发语言·c++·算法·leetcode
IMER SIMPLE4 小时前
人工智能-python-深度学习-神经网络-MobileNet V1&V2
人工智能·python·深度学习
njxiejing4 小时前
Pandas数据结构(DataFrame,字典赋值)
数据结构·人工智能·pandas
盼小辉丶4 小时前
TensorFlow深度学习实战(37)——深度学习的数学原理
人工智能·深度学习·tensorflow
GEO_YScsn4 小时前
计算机视觉 (CV) 基础:图像处理、特征提取与识别
图像处理·人工智能·计算机视觉
金井PRATHAMA4 小时前
超越模仿,探寻智能的本源:从人类认知机制到下一代自然语言处理
人工智能·自然语言处理·知识图谱
kyle~4 小时前
排序---冒泡排序(Bubble Sort)
c语言·c++·算法
l1t4 小时前
我改写的二分法XML转CSV文件程序速度追上了张泽鹏先生的
xml·c语言·人工智能·算法·expat
roshy4 小时前
MCP(模型上下文协议)入门教程1
人工智能·大模型·agent