0.618算法和基于Armijo准则的线搜索回退法

0.618代码如下:

import math

# 定义函数 h(t) = t^3 - 2t + 1

def h(t):

return t**3 - 2*t + 1

# 0.618 算法

def golden_section_search(a, b, epsilon):

ratio = 0.618

while (b - a) > epsilon:

x1 = b - ratio * (b - a)

x2 = a + ratio * (b - a)

h_x1 = h(x1)

h_x2 = h(x2)

if h_x1 < h_x2:

b = x2

else:

a = x1

return a # 或者返回 b ,因为它们的值非常接近

# t 大于等于 0 的范围内进行搜索

t_min_618 = golden_section_search(0, 3, 0.001)

print("0.618 算法找到的最小值: ", h(t_min_618))

基于Armijo准则的线搜索回退法代码如下:

import numpy as np

def h(t):

return t**3 - 2*t + 1

def h_derivative(t):

return 3*t**2 - 2

def armijo_line_search(t_current, direction, alpha, beta, c1):

t = t_current

step_size = 1.0

while True:

if h(t + direction * step_size) <= h(t) + alpha * step_size * direction * h_derivative(t):

return t + direction * step_size

else:

step_size *= beta

if np.abs(step_size) < 1e-6:

break

return None

def gradient_descent(start, end, alpha, beta, c1, epsilon):

t = start

while True:

if t > end:

break

direction = -h_derivative(t) # 负梯度方向

next_t = armijo_line_search(t, direction, alpha, beta, c1)

if next_t is None or np.abs(h_derivative(next_t)) <= epsilon:

return next_t

t = next_t

return None

# 参数设置

alpha = 0.1 # Armijo 准则中的参数 alpha

beta = 0.5 # Armijo 准则中的参数 beta

c1 = 1e-4 # 自定义参数,用于控制 Armijo 条件的满足程度

epsilon = 1e-6 # 梯度范数的终止条件

# 搜索区间为 [0,3]

start = 0

end = 3

# 执行梯度下降算法,求得近似最小值点

t_min = gradient_descent(start, end, alpha, beta, c1, epsilon)

print(" 求得的最小值点为 :", t_min)

print(" 最小值点的函数值为 :", h(t_min))

相关推荐
励志成为嵌入式工程师5 分钟前
c语言简单编程练习9
c语言·开发语言·算法·vim
捕鲸叉35 分钟前
创建线程时传递参数给线程
开发语言·c++·算法
A charmer39 分钟前
【C++】vector 类深度解析:探索动态数组的奥秘
开发语言·c++·算法
wheeldown1 小时前
【数据结构】选择排序
数据结构·算法·排序算法
阡之尘埃1 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
观音山保我别报错2 小时前
C语言扫雷小游戏
c语言·开发语言·算法
孙同学要努力3 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20213 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
TangKenny3 小时前
计算网络信号
java·算法·华为
景鹤3 小时前
【算法】递归+深搜:814.二叉树剪枝
算法