【flink】状态清理策略(TTL)

flink的keyed state是有有效期(TTL)的,使用和说明在官网描述的篇幅也比较多,对于三种清理策略没有进行横向对比得很清晰。

  • 全量快照清理(FULL_STATE_SCAN_SNAPSHOT)
  • 增量清理(INCREMENTAL_CLEANUP)
  • rocksdb压缩清理(ROCKSDB_COMPACTION_FILTER)

注意,三种状态清理策略不是互斥的,并不是三选一的问题 ,一般是全量快照清理配合另两个其中的一个来使用(需要根据不同的state backend),可以看到StateTtlConfig.CleanupStrategies.strategies是一个集合来的。

全量快照清理

只发生在全量checkpoint的时候,把过期的元素过滤掉,以减少远程端checkpoint storage的大小(如hdfs),无论状态后端是hashmap还是rocksdb都支持,官网用了另一种相同意思描述:在 RocksDBStateBackend 的增量 checkpoint 模式下无效(当前hashmap不支持增量checkpoint)

  • 开启方式

      StateTtlConfig ttlConfig = StateTtlConfig .newBuilder(Time.seconds(1))
          .cleanupFullSnapshot()   //只要有这行即可
          .build();
    

    // 只有开启了全量快照清理才会触发transform(过滤)
    private StateSnapshotTransformFactory<?> getSnapshotTransformFactory() {
    if (!ttlConfig.getCleanupStrategies().inFullSnapshot()) {
    return StateSnapshotTransformFactory.noTransform();
    } else {
    return new TtlStateSnapshotTransformer.Factory<>(timeProvider, ttl);
    }
    }

当进行全量快照是会遍历状态中每个元素(TtlValue),过滤掉那些已经过期的TtlStateSnapshotTransformer.expired()

增量清理

在状态访问、增加、修改、删除时都会触发,主要是为了减少状态后端中的大小,当前仅状态后端为hashmap才支持增量清理

这里的增量 有点难理解,实际它的含义是:对于一个keyed stated,状态是按key被分区成若干部分的,每次只取cleanupSize个key的状态(StateEntry)进行清理 ,对于大状态这是必须的,因为这会增加状态算子处理数据的时间。对于rocksdb,由于提供不了全局的StateEntry访问器,所以它不支持增量清理AbstractRocksDBState.getStateIncrementalVisitor

判断是否满足增量清理:TtlStateFactory.registerTtlIncrementalCleanupCallback

清理逻辑:TtlIncrementalCleanup.runCleanup

启用方式:这玩意在hashmap状态后端中是默认开启的!!!

        public IncrementalCleanupStrategy getIncrementalCleanupStrategy() {
            IncrementalCleanupStrategy defaultStrategy =
                    isCleanupInBackground ? DEFAULT_INCREMENTAL_CLEANUP_STRATEGY : null;
            return (IncrementalCleanupStrategy)
                    strategies.getOrDefault(Strategies.INCREMENTAL_CLEANUP, defaultStrategy);
        }

只要isCleanupInBackground=true,就算没显式调用cleanupIncrementally(),它依然会给你生成一个默认的增量清理策略。所以在上述全量快照清理的启用示例中同时也开启了增量清理。如果需要禁止,需要显式调disableCleanupInBackground()

rocksdb压缩清理

flink 提供的 rocksdb 压缩过滤器(FlinkCompactionFilter)会在压缩时过滤掉已经过期的状态数据,最终调用到C++的nactive方法,减少sst文件的大小。应该与增量/全量checkpoint方式无关。

相关推荐
豪越大豪几秒前
豪越消防一体化安全管控平台新亮点: AI功能、智能运维以及消防处置知识库
大数据·人工智能·运维开发
码界筑梦坊1 小时前
基于Flask的短视频流量数据可视化系统的设计与实现
大数据·python·信息可视化·flask·毕业设计
weixin_307779132 小时前
PySpark实现GROUP BY WITH CUBE和WITH ROLLUP的分类汇总功能
大数据·开发语言·python·spark
平凡君3 小时前
ElasticSearch查询指南:从青铜到王者的骚操作
大数据·elasticsearch·搜索引擎
Dolphin_Home5 小时前
搭建 Hadoop 3.3.6 伪分布式
大数据·hadoop·分布式
Yvonne9785 小时前
Hadoop HDFS基准测试
大数据·hadoop·hdfs
Yvonne9785 小时前
Hadoop初体验
大数据·hadoop
m0_748247557 小时前
重学SpringBoot3-整合 Elasticsearch 8.x (二)使用Repository
大数据·elasticsearch·jenkins
南宫文凯7 小时前
Hadoop-HA(高可用)机制
大数据·hadoop·分布式·hadoop-ha
乐享数科7 小时前
乐享数科:供应链金融—三个不同阶段的融资模式
大数据·人工智能·金融