【机器学习】决策树

参考课程视频:https://www.icourse163.org/course/NEU-1462101162?tid=1471214452

1 概述

样子:

2 分裂

2.1 分裂原则

信息增益

信息增益比

基尼指数

3 终止 & 剪枝

3.1 终止条件

  • 无需分裂
    • 当前节点内样本同属一类
  • 无法分裂
    • 当前节点内所有样本的特征向量完全相同
    • 采用任何特征都无法将当前样本集分为多个子类
  • 无数据可分
    • 当前节点内没有样本

3.2 剪枝

剪枝的目的:解决决策树过拟合现象(决策树规模大),提高决策树的泛化性能。

剪枝方法

  • 前剪枝(预剪枝)
    • 在决策树的生成过程中同步进行剪枝
    • 在节点进行分裂前,对比节点分裂前后决策树的泛化性能指标,若泛化性能在分裂后得到提升,执行分裂;否则不执行分裂。
  • 后剪枝
    • 在决策树完全生成后逐步剪去叶子节点
    • 常采用启发式方法从最深层的叶子节点或具有最高不纯度的
      叶子节点开始剪枝
    • 通过对比剪枝前后的泛化指标,决定是否剪去该叶子节点。

前剪枝 & 后剪枝 策略对比:

策略 时间 拟合风险 泛化能力
前剪枝 训练时间较少、测试时间较少 过拟合风险较低 、欠拟合风险较高 泛化能力一般
后剪枝 训练时间较长、测试时间较少 过拟合风险较低、欠拟合风险稳定 泛化能力较好

通常后剪枝比前剪枝保留的决策树规模更大。

4 决策树算法

4.1 经典决策树算法

ID3

C4.5

CART(Classification And Regression Tree)

4.2 算法对比分析

算法 特征选择 剪枝 处理数据类型 树类型
ID3 信息增益 离散 多叉树
C4.5 信息增益比 前剪枝 离散、连续 多叉树
CART 基尼指数 后剪枝 离散、连续 二叉树

总结:

  • CART的功能更全:分类、回归
  • CART具有更好的泛化性能:二叉树,后剪枝。
  • CART训练时间较长,计算开销较大。
  • 信息增益、信息增益比和基尼指数各有利弊。
相关推荐
飞哥数智坊2 小时前
从CodeBuddy翻车到MasterGo救场,我的小程序UI终于焕然一新
人工智能
AKAMAI5 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元6 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元6 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心6 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术7 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing7 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_7 小时前
NCCL的用户缓冲区注册
人工智能
sans_7 小时前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算8 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc