【机器学习】决策树

参考课程视频:https://www.icourse163.org/course/NEU-1462101162?tid=1471214452

1 概述

样子:

2 分裂

2.1 分裂原则

信息增益

信息增益比

基尼指数

3 终止 & 剪枝

3.1 终止条件

  • 无需分裂
    • 当前节点内样本同属一类
  • 无法分裂
    • 当前节点内所有样本的特征向量完全相同
    • 采用任何特征都无法将当前样本集分为多个子类
  • 无数据可分
    • 当前节点内没有样本

3.2 剪枝

剪枝的目的:解决决策树过拟合现象(决策树规模大),提高决策树的泛化性能。

剪枝方法

  • 前剪枝(预剪枝)
    • 在决策树的生成过程中同步进行剪枝
    • 在节点进行分裂前,对比节点分裂前后决策树的泛化性能指标,若泛化性能在分裂后得到提升,执行分裂;否则不执行分裂。
  • 后剪枝
    • 在决策树完全生成后逐步剪去叶子节点
    • 常采用启发式方法从最深层的叶子节点或具有最高不纯度的
      叶子节点开始剪枝
    • 通过对比剪枝前后的泛化指标,决定是否剪去该叶子节点。

前剪枝 & 后剪枝 策略对比:

策略 时间 拟合风险 泛化能力
前剪枝 训练时间较少、测试时间较少 过拟合风险较低 、欠拟合风险较高 泛化能力一般
后剪枝 训练时间较长、测试时间较少 过拟合风险较低、欠拟合风险稳定 泛化能力较好

通常后剪枝比前剪枝保留的决策树规模更大。

4 决策树算法

4.1 经典决策树算法

ID3

C4.5

CART(Classification And Regression Tree)

4.2 算法对比分析

算法 特征选择 剪枝 处理数据类型 树类型
ID3 信息增益 离散 多叉树
C4.5 信息增益比 前剪枝 离散、连续 多叉树
CART 基尼指数 后剪枝 离散、连续 二叉树

总结:

  • CART的功能更全:分类、回归
  • CART具有更好的泛化性能:二叉树,后剪枝。
  • CART训练时间较长,计算开销较大。
  • 信息增益、信息增益比和基尼指数各有利弊。
相关推荐
数字化脑洞实验室1 小时前
如何理解不同行业AI决策系统的功能差异?
大数据·人工智能·算法
视觉语言导航1 小时前
RAPID:基于逆强化学习的无人机视觉导航鲁棒且敏捷规划器
人工智能·无人机·具身智能
LO嘉嘉VE1 小时前
学习笔记二:发展历程
机器学习
TextIn智能文档云平台1 小时前
大模型文档解析技术有哪些?
人工智能
大明者省1 小时前
案例分析交叉熵和交叉验证区别和联系
人工智能·深度学习·神经网络·计算机视觉·cnn
FL16238631293 小时前
古籍影文公开古籍OCR检测数据集VOC格式共计8个文件
人工智能·ocr
星谷罗殇5 小时前
(七)TRPO 算法 & PPO 算法
算法·机器学习
递归不收敛5 小时前
专属虚拟环境:Hugging Face数据集批量下载(无登录+国内加速)完整指南
人工智能·笔记·git·python·学习·pycharm
qq_271581796 小时前
Ubuntu OpenCV C++ 获取Astra Pro摄像头图像
人工智能·opencv·计算机视觉
电鱼智能的电小鱼7 小时前
基于电鱼 ARM 工控机的井下AI故障诊断方案——让煤矿远程监控更智能、更精准
网络·arm开发·人工智能·算法·边缘计算