【机器学习】决策树

参考课程视频:https://www.icourse163.org/course/NEU-1462101162?tid=1471214452

1 概述

样子:

2 分裂

2.1 分裂原则

信息增益

信息增益比

基尼指数

3 终止 & 剪枝

3.1 终止条件

  • 无需分裂
    • 当前节点内样本同属一类
  • 无法分裂
    • 当前节点内所有样本的特征向量完全相同
    • 采用任何特征都无法将当前样本集分为多个子类
  • 无数据可分
    • 当前节点内没有样本

3.2 剪枝

剪枝的目的:解决决策树过拟合现象(决策树规模大),提高决策树的泛化性能。

剪枝方法

  • 前剪枝(预剪枝)
    • 在决策树的生成过程中同步进行剪枝
    • 在节点进行分裂前,对比节点分裂前后决策树的泛化性能指标,若泛化性能在分裂后得到提升,执行分裂;否则不执行分裂。
  • 后剪枝
    • 在决策树完全生成后逐步剪去叶子节点
    • 常采用启发式方法从最深层的叶子节点或具有最高不纯度的
      叶子节点开始剪枝
    • 通过对比剪枝前后的泛化指标,决定是否剪去该叶子节点。

前剪枝 & 后剪枝 策略对比:

策略 时间 拟合风险 泛化能力
前剪枝 训练时间较少、测试时间较少 过拟合风险较低 、欠拟合风险较高 泛化能力一般
后剪枝 训练时间较长、测试时间较少 过拟合风险较低、欠拟合风险稳定 泛化能力较好

通常后剪枝比前剪枝保留的决策树规模更大。

4 决策树算法

4.1 经典决策树算法

ID3

C4.5

CART(Classification And Regression Tree)

4.2 算法对比分析

算法 特征选择 剪枝 处理数据类型 树类型
ID3 信息增益 离散 多叉树
C4.5 信息增益比 前剪枝 离散、连续 多叉树
CART 基尼指数 后剪枝 离散、连续 二叉树

总结:

  • CART的功能更全:分类、回归
  • CART具有更好的泛化性能:二叉树,后剪枝。
  • CART训练时间较长,计算开销较大。
  • 信息增益、信息增益比和基尼指数各有利弊。
相关推荐
SUPER52663 小时前
本地开发环境_spring-ai项目启动异常
java·人工智能·spring
上进小菜猪7 小时前
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
人工智能
AI浩7 小时前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
GitCode官方7 小时前
SGLang AI 金融 π 对(杭州站)回顾:大模型推理的工程实践全景
人工智能·金融·sglang
木头左8 小时前
LSTM模型入参有效性验证基于量化交易策略回测的方法学实践
人工智能·rnn·lstm
找方案8 小时前
我的 all-in-rag 学习笔记:文本分块 ——RAG 系统的 “信息切菜术“
人工智能·笔记·all-in-rag
亚马逊云开发者8 小时前
让 AI 工作空间更智能:Amazon Quick Suite 集成博查搜索实践
人工智能
腾讯WeTest8 小时前
「低成本、高质高效」WeTest AI翻译限时免费
人工智能
Lucas555555558 小时前
现代C++四十不惑:AI时代系统软件的基石与新征程
开发语言·c++·人工智能
言之。8 小时前
Claude Code 专业教学文档
人工智能