【机器学习】决策树

参考课程视频:https://www.icourse163.org/course/NEU-1462101162?tid=1471214452

1 概述

样子:

2 分裂

2.1 分裂原则

信息增益

信息增益比

基尼指数

3 终止 & 剪枝

3.1 终止条件

  • 无需分裂
    • 当前节点内样本同属一类
  • 无法分裂
    • 当前节点内所有样本的特征向量完全相同
    • 采用任何特征都无法将当前样本集分为多个子类
  • 无数据可分
    • 当前节点内没有样本

3.2 剪枝

剪枝的目的:解决决策树过拟合现象(决策树规模大),提高决策树的泛化性能。

剪枝方法

  • 前剪枝(预剪枝)
    • 在决策树的生成过程中同步进行剪枝
    • 在节点进行分裂前,对比节点分裂前后决策树的泛化性能指标,若泛化性能在分裂后得到提升,执行分裂;否则不执行分裂。
  • 后剪枝
    • 在决策树完全生成后逐步剪去叶子节点
    • 常采用启发式方法从最深层的叶子节点或具有最高不纯度的
      叶子节点开始剪枝
    • 通过对比剪枝前后的泛化指标,决定是否剪去该叶子节点。

前剪枝 & 后剪枝 策略对比:

策略 时间 拟合风险 泛化能力
前剪枝 训练时间较少、测试时间较少 过拟合风险较低 、欠拟合风险较高 泛化能力一般
后剪枝 训练时间较长、测试时间较少 过拟合风险较低、欠拟合风险稳定 泛化能力较好

通常后剪枝比前剪枝保留的决策树规模更大。

4 决策树算法

4.1 经典决策树算法

ID3

C4.5

CART(Classification And Regression Tree)

4.2 算法对比分析

算法 特征选择 剪枝 处理数据类型 树类型
ID3 信息增益 离散 多叉树
C4.5 信息增益比 前剪枝 离散、连续 多叉树
CART 基尼指数 后剪枝 离散、连续 二叉树

总结:

  • CART的功能更全:分类、回归
  • CART具有更好的泛化性能:二叉树,后剪枝。
  • CART训练时间较长,计算开销较大。
  • 信息增益、信息增益比和基尼指数各有利弊。
相关推荐
亚马逊云开发者4 分钟前
Q CLI助力合合信息实现Aurora的升级运营
人工智能
涛涛北京17 分钟前
【强化学习实验】- 策略梯度算法
人工智能·算法
Fairy要carry23 分钟前
2025/12/15英语打卡
人工智能
weixin_4462608527 分钟前
《从零开始构建智能体》—— 实践与理论结合的智能体入门指南
人工智能
新加坡内哥谈技术34 分钟前
Claude 代理技能:从第一性原理出发的深度解析
人工智能
长空任鸟飞_阿康41 分钟前
FastAPI 入门指南
人工智能
Pyeako1 小时前
机器学习之KNN算法
人工智能·算法·机器学习
Mxsoft6191 小时前
我发现知识图谱节点关系缺失致诊断不准,自动关系抽取补全救场
人工智能
可信计算1 小时前
【算法随想】一种基于“视觉表征图”拓扑变化的NLP序列预测新范式
人工智能·笔记·python·算法·自然语言处理
爱笑的眼睛111 小时前
超越剪枝与量化:下一代AI模型压缩工具的技术演进与实践
java·人工智能·python·ai