轮廓平滑方法

目录

[1. 形态学操作](#1. 形态学操作)

[2. 边缘平滑化](#2. 边缘平滑化)

[3. 轮廓近似](#3. 轮廓近似)

[python 有回归线平滑 2D 轮廓](#python 有回归线平滑 2D 轮廓)


1. 形态学操作

利用形态学操作(例如腐蚀、膨胀、开运算、闭运算等)可以使分割边界更加平滑和连续。腐蚀可以消除小的不连续区域,膨胀可以填充空洞,而开运算可以平滑边界并保留边缘信息,闭运算则可以填充小的孔洞。

python 复制代码
import cv2
import numpy as np

# 读取语义分割结果
segmentation_result = cv2.imread('segmentation_result.png', 0)  # 读取单通道图像

# 形态学操作
kernel = np.ones((5,5), np.uint8)
smoothed_result = cv2.morphologyEx(segmentation_result, cv2.MORPH_CLOSE, kernel)

2. 边缘平滑化

在分割边界上应用边缘平滑化算法(如高斯滤波、均值滤波、中值滤波等)可以减少噪声并使得边界更加平滑。

复制代码

python code

python 复制代码
smoothed_result = cv2.GaussianBlur(segmentation_result, (5, 5), 0)

3. 轮廓近似

利用轮廓近似算法(如Douglas-Peucker算法)可以对边界轮廓进行抽稀,从而使得轮廓更加平滑。

python 复制代码
contours, _ = cv2.findContours(segmentation_result, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

epsilon = 0.02 * cv2.arcLength(contours[0], True)
approx = cv2.approxPolyDP(contours[0], epsilon, True)
smoothed_result = np.zeros_like(segmentation_result)
cv2.drawContours(smoothed_result, [approx], -1, 255, thickness=cv2.FILLED)

python 有回归线平滑 2D 轮廓

python 复制代码
import cv2
import numpy as np
from scipy.interpolate import splprep, splev
import matplotlib.pyplot as plt

# 假设有一组轮廓点坐标
x = np.array([10, 20, 30, 40, 50])
y = np.array([5, 15, 10, 25, 20])

# 多项式拟合
tck, _ = splprep([x, y], s=0)  # s 参数控制拟合平滑度

# 生成新的平滑轮廓点
new_points = splev(np.linspace(0, 1, 100), tck)

# 创建一张空白图像
image = np.zeros((100, 100), dtype=np.uint8)

# 将平滑后的轮廓点转换为整数坐标,并绘制在图像上
smoothed_contour = np.array(new_points, dtype=np.int32).T.reshape((-1, 1, 2))
cv2.polylines(image, [smoothed_contour], isClosed=False, color=255, thickness=1)

# 将图像转换为RGB格式以供Matplotlib显示
image_rgb = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
相关推荐
Guheyunyi几秒前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
码码哈哈爱分享1 分钟前
[特殊字符] Whisper 模型介绍(OpenAI 语音识别系统)
人工智能·whisper·语音识别
郄堃Deep Traffic7 分钟前
机器学习+城市规划第十三期:XGBoost的地理加权改进,利用树模型实现更精准的地理加权回归
人工智能·机器学习·回归·城市规划
Lucky-Niu7 分钟前
解决transformers.adapters import AdapterConfig 报错的问题
人工智能·深度学习
FserSuN12 分钟前
Prompt工程学习之思维树(TOT)
人工智能·学习·prompt
sponge'37 分钟前
opencv学习笔记2:卷积、均值滤波、中值滤波
笔记·python·opencv·学习
字节跳动_离青1 小时前
智能的路径
人工智能
王上上1 小时前
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
论文阅读·人工智能·cnn
Channing Lewis1 小时前
如果科技足够发达,是否还需要维持自然系统(例如生物多样性)中那种‘冗余’和‘多样性’,还是可以只保留最优解?
大数据·人工智能·科技
禺垣1 小时前
区块链技术概述
大数据·人工智能·分布式·物联网·去中心化·区块链