CycleGAN-两个领域非匹配图像的相互转换

1. CycleGAN的简介

pix2pix可以很好地处理匹配数据集图像转换,但是在很多情况下匹配数据集是没有的或者是很难收集到的,但是我们可以很容易的得到两个领域大量的非匹配数据。2017年有两篇非常相似的论文CycleGAN和DiscoGAN,提出了一种解决非匹配数据集的图像转换方案。而且CycleGAN在转换的过程中,只是将A领域图像的某些特性转换成B领域的一些特性,图像的其余大部分内容都没有改变。CycleGAN 能实现两个相近数据集之间的转换。

2. CycleGAN的网络结构

CycleGAN网络结构的拆分

该结构中,生成器相当于一个自编码网络,前半部分进行编码,后半部分进行解码,而且生成器G和生成器F的结构完全相同,其中生成器G负责实现由X到Y的转换,生成器F负责实现由Y到X的转换,它们的输入、输出的大小均为(batch_size, n_channel, cols, rows),判别器的输入为(batch_size, n_channel, cols, rows), 判别器的输出为(batch_size, 1, s1, s2)。

3. CycleGAN的损失函数

(1)对抗损失

对抗损失的作用是,使生成的目标领域的图像和目标领域的真实图像尽可能地接近。

(2)循环损失

循环损失的作用是,使生成的图像尽可能多的保留原始图像的内容。

在网络训练的过程中是将G和F联合起来一起训练的,Dx 和Dy 是单独进行训练的。

G-F联合网络的损失函数为:

fake_B = G_AB(real_A)

loss_GAN_AB = torch.nn.MSELoss(D_B(fake_B), valid)

fake_A = G_BA(real_B)

loss_GAN_BA = torch.nn.MSELoss(D_A(fake_A), valid)

loss_G_GAN = (loss_GAN_AB + loss_GAN_BA) / 2 # 生成器的对抗损失

recov_A = G_BA(fake_B)

loss_cycle_A = torch.nn.L1Loss(recov_A, real_A)

recov_cycle_B = G_AB(fake_A)

loss_cycle_B = torch.nn.L1Loss(recov_B, real_B)

loss_cycle = (loss_cycle_A + loss_cycle_B) / 2 # 生成器的循环损失

Loss_G = loss_G_GAN + lambda_cycle * loss_cycle

loss_real = torch.nn.MSELoss(D_A(real_A), valid)

fake_A = fake_A_buffer.push_and_pop(fake_A)

loss_fake = torch.nn.MSELoss(D_A(fake_A.detach()), fake)

loss_D_A = (loss_real + loss_fake) / 2

loss_real = torch.nn.MSELoss(D_B(real_B), valid)

fake_B = fake_B_buffer.push_and_pop(fake_B)

loss_fake = torch.nn.MSELoss(D_B(fake_B.detach(), fake)

loss_D_B = (loss_real + loss_fake) / 2

引自:

CycleGAN-两个领域非匹配图像的相互转换 - 简书1. CycleGAN的简介 pix2pix可以很好地处理匹配数据集图像转换,但是在很多情况下匹配数据集是没有的或者是很难收集到的,但是我们可以很容易的得到两个领域大...https://www.jianshu.com/p/40ddf1d9c8ef

相关推荐
THMAIL3 分钟前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
却道天凉_好个秋5 分钟前
计算机视觉(八):开运算和闭运算
人工智能·计算机视觉·开运算与闭运算
无风听海6 分钟前
神经网络之深入理解偏置
人工智能·神经网络·机器学习·偏置
北京地铁1号线40 分钟前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
fantasy_arch1 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
非门由也3 小时前
《sklearn机器学习——回归指标1》
机器学习·回归·sklearn
拓端研究室3 小时前
Python用PSO优化SVM与RBFN在自动驾驶系统仿真、手写数字分类应用研究
人工智能·机器学习
Shiyuan73 小时前
【检索通知】2025年IEEE第二届深度学习与计算机视觉国际会议检索
人工智能·深度学习·计算机视觉
Monkey的自我迭代4 小时前
基于OpenCV的银行卡号识别系统:从原理到实现
人工智能·opencv·计算机视觉
小白狮ww4 小时前
RStudio 教程:以抑郁量表测评数据分析为例
人工智能·算法·机器学习