一文说透Redis ZSet

单讲概念会有些枯燥,我们还是从实际场景出发,进行逐层分析深挖。

有个这样的业务场景,京东家电需要根据各品牌的当日累计销售额,来实时构建"销售额排行榜"。

如下图所示:

从技术实现的角度,最简单、且实时性高的方式,当然是一条SQL搞定一切,根据品牌进行分组,然后按照销售额进行降序排序就好了。

SQL如下:

vbnet 复制代码
SELECT
	brand_id ,
	sum(amount) AS total_amount
FROM
	ea_order
WHERE
	`status` = 1
AND create_time > '2023-12-06'          //当天
GROUP BY
	brand_id
ORDER BY
	total_amount DESC;

但有一点,这种大电商平台一旦搞促销的话,家电品类的单日订单量达到几百万是很轻松的。这种情况下,不但SQL执行时间很长,并且对数据库资源的消耗也很大。

另外就是,如果产品经理加了新需求,还要要统计当月订单量的排行榜,那就直接GG了。

因此,我们需要寻求新的解决方案,该方案需要同时满足高实时性、高性能、海量数据三个要求,缺一不可。这时候,就混到Redis ZSet粉墨登场了。

何为Set?

Set是一个无序的天然去重的集合,即:Key-Set。此外还提供了交集、并集等一系列直接操作集合的方法,对于求共同好友(粉丝)、共同爱好之类的业务场景,实现特别方便。

如下图所示:

对应操作如下:

php 复制代码
//好友关注场景

redis> SADD Tony Mary    //Mary关注了Tony
(integer) 1
redis> SADD Tony Lynn    //Lynn关注了Tony
(integer) 1
redis> SMEMBERS Tony     //Tony的粉丝列表
1) "Mary"
2) "Lynn"
redis> SADD Tom Mary     //Mary关注了Tom
(integer) 1
redis> SADD Tom Eric     //Eric关注了Tom
(integer) 1
redis> SMEMBERS Tom      //Tom的粉丝列表
1) "Mary"
2) "Eric"
redis> SINTER Tony Tom   //Tony和Tom的共同粉丝
1) "Mary"
redis> SUNION Tony Tom   //Tony和Tom两个人的所有粉丝
1) "Mary"
2) "Lynn"
3) "Eric"
redis> SDIFF Tony Tom   //关注了Tony,但没有关注Tom的人
1) "Lynn"
redis> SDIFF Tom Tony   //关注了Tom,但没有关注Tony的人
1) "Eric"

说下Set和List数据结构的区别:

  • List中可以存储重复元素,而Set中只能存储非重复元素。
  • List中存储的元素是有先后顺序的,而Set中存储的元素则是无序的。

何为ZSet?

Zset(SortedSet),是Set的可排序版,是通过增加一个排序属性score来实现的,适用于排行榜和时间线之类的业务场景。

如下图所示,这里的score属性对应的是销售额:

对应操作如下:

php 复制代码
//销量排行榜场景

redis> ZADD 家电全品类 5.5 海尔       //添加了海尔电器和5.5亿销售额
(integer) 1
redis> ZADD 家电全品类 4.5 美的       //添加了美的电器和4.5亿销售额
(integer) 1
redis> ZADD 家电全品类 3.2 小米       //添加了小米电器和3.2亿销售额
(integer) 1
redis> ZADD 家电全品类 2.7 格力       //添加了格力电器和2.7亿销售额
(integer) 1
redis> ZCARD 家电全品类              //家电全品类的数量
(integer) 4
redis> ZSCORE 家电全品类 格力        //获取格力的销售额
"2.7"
redis> ZREVRANGE 家电全品类 0 -1 WITHSCORES    //家电全品类的倒序输出
1) "海尔"
2) "5.5"
3) "美的"
4) "4.5"
5) "小米"
6) "3.2"
7) "格力"
8) "2.7"
redis> ZRANGE 家电全品类 0 -1 WITHSCORES      //家电全品类的正序输出
1) "格力"
2) "2.7"
3) "小米"
4) "3.2"
5) "美的"
6) "4.5"
7) "海尔"
8) "5.5"
redis> ZINCRBY 家电全品类 2.2 格力            //为格力增加2.2亿销售额
"4.9"
redis> ZREVRANGE 家电全品类 0 -1 WITHSCORES   //增加销售额后的排行榜变化
1) "海尔"
2) "5.5"
3) "格力"
4) "4.9"
5) "美的"
6) "4.5"
7) "小米"
8) "3.2"

ZSet具备非常好的性能和并发度,以下为Redis性能白皮书上的指标:

虽然上面只有ZADD的测试数据,但ZINCRBY和ZREVRANGE(限制读取范围)也不会差,肯定都是同一个数据量级的。

注意点:在Redis Cluster模式下,需要对ZREVRANGE的读取范围进行限制,避免大热Key的出现。

Redis ZSet在排行榜场景中,具备高性能的原因有二:

  • 用空间换时间的思想。
  • 优秀的底层实现。

ZSet底层实现

我们以Redis 7 为例,ZSet的底层实现还是比较复杂的,用了三种数据结构来进行实现,分别是skiplist(跳表)、dict(哈希表)和listpack实现的。

其具体判断规则如下:

当ZSet元素个数小于128(zset_max_listpack_entries的默认值),并且元素值小于64字节(zset_max_listpack_value的默认值)的时候,使用listpack作为底层结构,以节省空间,否则使用skiplist + dict作为底层结构,以提升效率。

下面我们就来分别介绍一下。

listpack

listpack可以看做是ziplist的优化版本,ziplist的整体结构如下:

ziplist包含如下字段:

  • zlbytes, 4个字节,记录ziplist所占的空间。

  • zltail, 4个字节,记录ziplist尾部的偏移量。

  • zllen, 2个字节,记录ziplist中存储的entry数量。

  • entry,ziplist中的具体数据项,不定长。

  • zlend, 1个字节,用来标记ziplist的结束点,固定值为255。

    其中,entry又包括三个字段:

  • prevlen, 记录前一个entry的长度,便于从后往前遍历。如果prelen的值小于254,用1个字节来保存,大于等于254,则用5个字节。

  • encoding,1、2或5个字节,记录当前节点的类型(字符串或整数)和长度。

  • data,实际存储的数据,不定长。

优点

  • 数据结构紧凑,内存空间连续,节省内存开销且可以利用CPU缓存。

缺点

  • 若保存元素过多,会导致查询效率降低,适用于少量元素,且元素占用空间不大的场景。

  • 可能会引发级联更新问题。

**级联更新问题:

**

如上文所说,entry中的prelen值,如果小于254,用1个字节来保存,大于等于254,则用5个字节。

如果ziplist更新entry1,恰好entry1从小于254字节,变成了大于等于254字节,那么entry2节点的prelen属性,就会从1个字节变成5个字节。

恰好entry2由于上述原因,也从小于254字节,变成了大于等于254字节,那么entry3节点的prelen属性,就会从1个字节变成5个字节,以此类推。

而listpack的出现,正是为了解决级联更新的问题,listpack的整体结构如下:

我们可以看下,listpack和ziplist的整体结构大同小异,也是通过total_bytes字段记录listpack所占的空间,size字段记录entry数量,最后也有个结束点标记,只是少了ztail_offset字段。

而entry中,多了length字段,来记录encoding + content的总长度,重点是少了prevlen字段,从而避免了ziplist中的级联更新问题。

skiplist + dict

ZSet数据量比较少的场景,它的增删改和多维度查询操作,无论怎么处理都不会慢。一旦数据量庞大起来,那就完全不一样了,ZSet是通过skiplist + dict的方式来实现的。

为什么同时选择skiplist + dict?

这是基于提升性能考虑的,这也是Redis设计的精妙之处。

只使用skiplist:根据成员查找分值操作(ZSCORE)的复杂度从 O(1) 上升为 O(logN)。

只使用dict:在执行范围查询操作(ZREVRANGE、ZRANGE)的时候,字典需要进行排序,至少需要O(NlogN) 的时间复杂度和 O(N) 的内存空间。

skiplist + dict各存一份完整数据?

不是这样的,skiplist Node中的 *obj 和 dict 中的 *key 会指向同一个具体 member(元素)的地址,这样可以节省内存。

相关推荐
怪兽20141 小时前
Redis过期键的删除策略有哪些?
java·数据库·redis·缓存·面试
Victor3561 小时前
Redis(76)Redis作为缓存的常见使用场景有哪些?
后端
Victor3561 小时前
Redis(77)Redis缓存的优点和缺点是什么?
后端
摇滚侠4 小时前
Spring Boot 3零基础教程,WEB 开发 静态资源默认配置 笔记27
spring boot·笔记·后端
天若有情6736 小时前
Java Swing 实战:从零打造经典黄金矿工游戏
java·后端·游戏·黄金矿工·swin
一只叫煤球的猫7 小时前
建了索引还是慢?索引失效原因有哪些?这10个坑你踩了几个
后端·mysql·性能优化
21号 18 小时前
9.Redis 集群(重在理解)
数据库·redis·算法
爬山算法8 小时前
Redis(73)如何处理Redis分布式锁的死锁问题?
数据库·redis·分布式
jason.zeng@15022078 小时前
centos中安装redis
linux·redis·centos
magic334165639 小时前
Springboot整合MinIO文件服务(windows版本)
windows·spring boot·后端·minio·文件对象存储