Pytorch项目,肺癌检测项目之三

成功获取到数据之后,我们需要将数据放到Pytorch里面去处理,我们需要将其转换成Dataset数据集,方便去使用相同的API。要转换成Dataset数据集需要实现两个方法,方法一: 方法二:

运行比较慢的话,需要加入缓存 的方法:

缓存部分

@functools.lru_cache(1,typed=True)

def getCt(series_uid):

return Ct(series_uid)

@raw_cache.memoize(typed=True)

def getCtRawCandidate(series_uid,center_xyz,width_irc):

ct = getCt(series_uid)

ct_chunk,center_irc = ct.getCtRawCandidate(center_xyz,width_irc)

return ct_chunk,center_irc

def len(self):

return len(self.candidateInfo_list)

def getitem(self,ndx):

candidateInfo_tup = self.candidateInfo_list[ndx]

width_irc = (32,48,48)

candidate_a,center_irc = getCtRawCandidate(candidateInfo_tup.series_uid,candidateInfo.center_xyz,width_irc)

#转换为张量

candidate_t = torch.from_numpy(candidate_a)

#转换为浮点数

cadidate_t = candidate_t.to(torch.float32)

#进行升维

cadidate_t = candidate_t.unsqueeze(0)

#处理标注信息

post_t = torch.tensor([not candidateInfo_tup.isNodule_boool,candidateInfo_tup.isNodule_boool],dtype=torch.long)

#返回资源组

return (candidate_t,post_t,candidateInfo_tup.series_uid,torch.tensor(center_irc))

使用Dataset提供的方案,将数据分割为数据集和验证集

class LunaDataset():

def init(self,val_stride=0,isValSet_bool=None,series_uid=None):

self.candidateInfo_list = copy.copy(getCandidateInfoList())

if series_uid:

self.candidateInfo_list = [x for in self.candidateInfo_list if x.series_uid == series_uid]

#是否是验证集

if isValSet_bool:

增加异常捕获信息

assert val_stride>0,val_stride

返回验证集的步长信息,步长信息就是对验证集进行切分的

self.candidateInfo_list = self.candidateInfo_list[::val_stride]

assert self.candidateInfo_list

如果不是验证集,就是训练集

elif val_stride>0:

del self.candidateInfo_list[::val_stride]

assert self.candidateInfo_list

log.info("(!r): {} {} samples".format(

self,len(self.candidateInfo_list), "Validation" if isValSet_bool else "training"

))

相关推荐
拓端研究室33 分钟前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI37 分钟前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日200642 分钟前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3932 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
子燕若水6 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室7 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿7 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫7 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手7 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记7 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型