Pytorch项目,肺癌检测项目之三

成功获取到数据之后,我们需要将数据放到Pytorch里面去处理,我们需要将其转换成Dataset数据集,方便去使用相同的API。要转换成Dataset数据集需要实现两个方法,方法一: 方法二:

运行比较慢的话,需要加入缓存 的方法:

缓存部分

@functools.lru_cache(1,typed=True)

def getCt(series_uid):

return Ct(series_uid)

@raw_cache.memoize(typed=True)

def getCtRawCandidate(series_uid,center_xyz,width_irc):

ct = getCt(series_uid)

ct_chunk,center_irc = ct.getCtRawCandidate(center_xyz,width_irc)

return ct_chunk,center_irc

def len(self):

return len(self.candidateInfo_list)

def getitem(self,ndx):

candidateInfo_tup = self.candidateInfo_list[ndx]

width_irc = (32,48,48)

candidate_a,center_irc = getCtRawCandidate(candidateInfo_tup.series_uid,candidateInfo.center_xyz,width_irc)

#转换为张量

candidate_t = torch.from_numpy(candidate_a)

#转换为浮点数

cadidate_t = candidate_t.to(torch.float32)

#进行升维

cadidate_t = candidate_t.unsqueeze(0)

#处理标注信息

post_t = torch.tensor([not candidateInfo_tup.isNodule_boool,candidateInfo_tup.isNodule_boool],dtype=torch.long)

#返回资源组

return (candidate_t,post_t,candidateInfo_tup.series_uid,torch.tensor(center_irc))

使用Dataset提供的方案,将数据分割为数据集和验证集

class LunaDataset():

def init(self,val_stride=0,isValSet_bool=None,series_uid=None):

self.candidateInfo_list = copy.copy(getCandidateInfoList())

if series_uid:

self.candidateInfo_list = [x for in self.candidateInfo_list if x.series_uid == series_uid]

#是否是验证集

if isValSet_bool:

增加异常捕获信息

assert val_stride>0,val_stride

返回验证集的步长信息,步长信息就是对验证集进行切分的

self.candidateInfo_list = self.candidateInfo_list[::val_stride]

assert self.candidateInfo_list

如果不是验证集,就是训练集

elif val_stride>0:

del self.candidateInfo_list[::val_stride]

assert self.candidateInfo_list

log.info("(!r): {} {} samples".format(

self,len(self.candidateInfo_list), "Validation" if isValSet_bool else "training"

))

相关推荐
这张生成的图像能检测吗4 分钟前
(论文速读)YOLA:学习照明不变特征的低光目标检测
图像处理·人工智能·目标检测·计算机视觉·低照度
ZPC821016 分钟前
opencv 获取图像中物体的坐标值
人工智能·python·算法·机器人
亚里随笔23 分钟前
AsyPPO_ 轻量级mini-critics如何提升大语言模型推理能力
人工智能·语言模型·自然语言处理·llm·agentic
coding_ksy29 分钟前
基于启发式的多模态风险分布越狱攻击,针对多模态大型语言模型(ICCV 2025) - 论文阅读和解析
人工智能·语言模型
测试199831 分钟前
如何写出一个完整的测试用例?
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·接口测试
微笑尅乐41 分钟前
三种方法解开——力扣3370.仅含置位位的最小整数
python·算法·leetcode
算家计算1 小时前
5年后手机和APP将成历史?马斯克最新预言背后:端云协同与AI操作系统的未来架构
人工智能·云计算·资讯
多恩Stone2 小时前
【3DV 进阶-5】3D生成中 Inductive Bias (归纳偏置)的技术路线图
人工智能·python·算法·3d·aigc
HaiLang_IT2 小时前
2026 人工智能与大数据专业毕业论文选题方向及题目示例(nlp/自然语言处理/图像处理)
大数据·人工智能·毕业设计选题