Pytorch项目,肺癌检测项目之三

成功获取到数据之后,我们需要将数据放到Pytorch里面去处理,我们需要将其转换成Dataset数据集,方便去使用相同的API。要转换成Dataset数据集需要实现两个方法,方法一: 方法二:

运行比较慢的话,需要加入缓存 的方法:

缓存部分

@functools.lru_cache(1,typed=True)

def getCt(series_uid):

return Ct(series_uid)

@raw_cache.memoize(typed=True)

def getCtRawCandidate(series_uid,center_xyz,width_irc):

ct = getCt(series_uid)

ct_chunk,center_irc = ct.getCtRawCandidate(center_xyz,width_irc)

return ct_chunk,center_irc

def len(self):

return len(self.candidateInfo_list)

def getitem(self,ndx):

candidateInfo_tup = self.candidateInfo_list[ndx]

width_irc = (32,48,48)

candidate_a,center_irc = getCtRawCandidate(candidateInfo_tup.series_uid,candidateInfo.center_xyz,width_irc)

#转换为张量

candidate_t = torch.from_numpy(candidate_a)

#转换为浮点数

cadidate_t = candidate_t.to(torch.float32)

#进行升维

cadidate_t = candidate_t.unsqueeze(0)

#处理标注信息

post_t = torch.tensor([not candidateInfo_tup.isNodule_boool,candidateInfo_tup.isNodule_boool],dtype=torch.long)

#返回资源组

return (candidate_t,post_t,candidateInfo_tup.series_uid,torch.tensor(center_irc))

使用Dataset提供的方案,将数据分割为数据集和验证集

class LunaDataset():

def init(self,val_stride=0,isValSet_bool=None,series_uid=None):

self.candidateInfo_list = copy.copy(getCandidateInfoList())

if series_uid:

self.candidateInfo_list = [x for in self.candidateInfo_list if x.series_uid == series_uid]

#是否是验证集

if isValSet_bool:

增加异常捕获信息

assert val_stride>0,val_stride

返回验证集的步长信息,步长信息就是对验证集进行切分的

self.candidateInfo_list = self.candidateInfo_list[::val_stride]

assert self.candidateInfo_list

如果不是验证集,就是训练集

elif val_stride>0:

del self.candidateInfo_list[::val_stride]

assert self.candidateInfo_list

log.info("(!r): {} {} samples".format(

self,len(self.candidateInfo_list), "Validation" if isValSet_bool else "training"

))

相关推荐
xiaopengbc3 分钟前
在 Python 中实现观察者模式的具体步骤是什么?
开发语言·python·观察者模式
AIGC小火龙果5 分钟前
OpenAI的开源王牌:gpt-oss上手指南与深度解析
人工智能·经验分享·gpt·搜索引擎·aigc·ai编程
新智元7 分钟前
狂登热搜,iPhone 17「挤爆牙膏」!5999 起价,AirPods 变身同声传译
人工智能·openai
Python大数据分析@8 分钟前
python用selenium怎么规避检测?
开发语言·python·selenium·网络爬虫
ThreeAu.11 分钟前
Miniconda3搭建Selenium的python虚拟环境全攻略
开发语言·python·selenium·minicoda·python环境配置
SHUIPING_YANG17 分钟前
如何让dify分类器更加精准的分类?
人工智能·分类·数据挖掘
偷心伊普西隆20 分钟前
Python EXCEL 理论探究:格式转换时处理缺失值方法
python·excel
星期天要睡觉20 分钟前
计算机视觉(opencv)——基于模板匹配的身份证号识别系统
人工智能·opencv·计算机视觉
东方佑26 分钟前
打破常规:“无注意力”神经网络为何依然有效?
人工智能·深度学习·神经网络