Pytorch项目,肺癌检测项目之三

成功获取到数据之后,我们需要将数据放到Pytorch里面去处理,我们需要将其转换成Dataset数据集,方便去使用相同的API。要转换成Dataset数据集需要实现两个方法,方法一: 方法二:

运行比较慢的话,需要加入缓存 的方法:

缓存部分

@functools.lru_cache(1,typed=True)

def getCt(series_uid):

return Ct(series_uid)

@raw_cache.memoize(typed=True)

def getCtRawCandidate(series_uid,center_xyz,width_irc):

ct = getCt(series_uid)

ct_chunk,center_irc = ct.getCtRawCandidate(center_xyz,width_irc)

return ct_chunk,center_irc

def len(self):

return len(self.candidateInfo_list)

def getitem(self,ndx):

candidateInfo_tup = self.candidateInfo_list[ndx]

width_irc = (32,48,48)

candidate_a,center_irc = getCtRawCandidate(candidateInfo_tup.series_uid,candidateInfo.center_xyz,width_irc)

#转换为张量

candidate_t = torch.from_numpy(candidate_a)

#转换为浮点数

cadidate_t = candidate_t.to(torch.float32)

#进行升维

cadidate_t = candidate_t.unsqueeze(0)

#处理标注信息

post_t = torch.tensor([not candidateInfo_tup.isNodule_boool,candidateInfo_tup.isNodule_boool],dtype=torch.long)

#返回资源组

return (candidate_t,post_t,candidateInfo_tup.series_uid,torch.tensor(center_irc))

使用Dataset提供的方案,将数据分割为数据集和验证集

class LunaDataset():

def init(self,val_stride=0,isValSet_bool=None,series_uid=None):

self.candidateInfo_list = copy.copy(getCandidateInfoList())

if series_uid:

self.candidateInfo_list = [x for in self.candidateInfo_list if x.series_uid == series_uid]

#是否是验证集

if isValSet_bool:

增加异常捕获信息

assert val_stride>0,val_stride

返回验证集的步长信息,步长信息就是对验证集进行切分的

self.candidateInfo_list = self.candidateInfo_list[::val_stride]

assert self.candidateInfo_list

如果不是验证集,就是训练集

elif val_stride>0:

del self.candidateInfo_list[::val_stride]

assert self.candidateInfo_list

log.info("(!r): {} {} samples".format(

self,len(self.candidateInfo_list), "Validation" if isValSet_bool else "training"

))

相关推荐
Q_Q19632884758 分钟前
python的电影院座位管理可视化数据分析系统
开发语言·spring boot·python·django·flask·node.js·php
BYSJMG20 分钟前
计算机大数据毕业设计推荐:基于Hadoop+Spark的食物口味差异分析可视化系统【源码+文档+调试】
大数据·hadoop·分布式·python·spark·django·课程设计
爱分享的飘哥32 分钟前
第七十章:告别“手写循环”噩梦!Trainer结构搭建:PyTorch Lightning让你“一键炼丹”!
人工智能·pytorch·分布式训练·lightning·accelerate·训练框架·trainer
杜子不疼.35 分钟前
《Python学习之第三方库:开启无限可能》
开发语言·python·学习
阿里云大数据AI技术1 小时前
PAIFuser:面向图像视频的训练推理加速框架
人工智能·机器学习
盛世隐者1 小时前
【深度学习】pytorch深度学习框架的环境配置
人工智能·pytorch·深度学习
说私域1 小时前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的流量转化策略研究
人工智能·小程序
funfan05171 小时前
GPT-5博士级AI使用教程及国内平替方案
人工智能·gpt
青衫客361 小时前
用 Python 实现一个“小型 ReAct 智能体”:思维链 + 工具调用 + 环境交互
python·大模型·llm·react
萤丰信息2 小时前
技术赋能安全:智慧工地构建城市建设新防线
java·大数据·开发语言·人工智能·智慧城市·智慧工地