算法(TS):最大子序和

最大子序和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]

输出:6

解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]

输出:1

示例 3:

输入:nums = [5,4,-1,7,8]

输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

解法一

使用分治算法求解最大子序和问题的思路是将数组分成两半,分别求解左半部分的最大子序和、右半部分的最大子序和,以及跨越中点的最大子序和。这三个值中的最大值即为整个数组的最大子序和。

ini 复制代码
function maxSubArray(nums: number[]): number {
    if (nums.length === 0) {
        return 0;
    }

    return divideAndConquer(nums, 0, nums.length - 1);
}

function divideAndConquer(nums: number[], left: number, right: number): number {
    if (left === right) {
        return nums[left]; // 单个元素的最大子序和就是该元素本身
    }

    const mid = Math.floor((left + right) / 2);

    // 分别求解左半部分、右半部分的最大子序和
    const leftMax = divideAndConquer(nums, left, mid);
    const rightMax = divideAndConquer(nums, mid + 1, right);

    // 求解跨越中点的最大子序和
    const crossMax = maxCrossingSum(nums, left, mid, right);

    // 返回三者中的最大值
    return Math.max(leftMax, rightMax, crossMax);
}

function maxCrossingSum(nums: number[], left: number, mid: number, right: number): number {
    let leftSum = -Infinity;
    let sum = 0;

    // 从中点向左计算最大子序和
    for (let i = mid; i >= left; i--) {
        sum += nums[i];
        leftSum = Math.max(leftSum, sum);
    }

    let rightSum = -Infinity;
    sum = 0;

    // 从中点向右计算最大子序和
    for (let i = mid + 1; i <= right; i++) {
        sum += nums[i];
        rightSum = Math.max(rightSum, sum);
    }

    // 返回跨越中点的最大子序和
    return leftSum + rightSum;
}

// 示例
const nums: number[] = [-2, 1, -3, 4, -1, 2, 1, -5, 4];
console.log(maxSubArray(nums)); // 输出: 6 (子数组 [4, -1, 2, 1] 的和最大)

算法的时间复杂度为 O(n log n),由于把数组分成两半之后递归,因此空间复杂度为O(log n)。

解法二

运用动态规划求解。在遍历数组的过程中,判断 nums[i] 的值是否应该并入之前的序列 prev 中,如果 nums[i] > prev + nums[i],意味着 nums[i] 应该单独成为一个序列,否则该并入 prev 中形成一个比自己更大的序列。maxAn 则是从所有的序列和中取最大值。

ini 复制代码
function maxSubArray(nums: number[]): number {
    let maxAn = nums[0],prev = nums[0],i = 1
    const len = nums.length
    while(i < len) {
        prev = Math.max(prev + nums[i],nums[i])
        maxAn = Math.max(maxAn,prev)
        i++
    }
    return maxAn
};

时间复杂度O(n),空间复杂度O(1)。这种方法避免了递归调用和栈空间的开销,将分治算法转化为迭代的形式,更容易理解和实现。

相关推荐
mm-q291522272919 分钟前
【天野学院5期】 第5期易语言半内存辅助培训班,主讲游戏——手游:仙剑奇侠传4,端游:神魔大陆2
人工智能·算法·游戏
MoRanzhi120326 分钟前
Python 实现:从数学模型到完整控制台版《2048》游戏
数据结构·python·算法·游戏·数学建模·矩阵·2048
2401_8414956440 分钟前
【数据结构】基于BF算法的树种病毒检测
java·数据结构·c++·python·算法·字符串·模式匹配
蒙奇D索大1 小时前
【算法】递归算法实战:汉诺塔问题详解与代码实现
c语言·考研·算法·面试·改行学it
一只鱼^_1 小时前
力扣第 474 场周赛
数据结构·算法·leetcode·贪心算法·逻辑回归·深度优先·启发式算法
叫我龙翔2 小时前
【数据结构】从零开始认识图论 --- 单源/多源最短路算法
数据结构·算法·图论
常常不爱学习2 小时前
Vue3 + TypeScript学习
开发语言·css·学习·typescript·html
深圳佛手2 小时前
几种限流算法介绍和使用场景
网络·算法
陌路202 小时前
S14排序算法--基数排序
算法·排序算法
ysa0510303 小时前
虚拟位置映射(标签鸽
数据结构·c++·笔记·算法