算法(TS):最大子序和

最大子序和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]

输出:6

解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]

输出:1

示例 3:

输入:nums = [5,4,-1,7,8]

输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

解法一

使用分治算法求解最大子序和问题的思路是将数组分成两半,分别求解左半部分的最大子序和、右半部分的最大子序和,以及跨越中点的最大子序和。这三个值中的最大值即为整个数组的最大子序和。

ini 复制代码
function maxSubArray(nums: number[]): number {
    if (nums.length === 0) {
        return 0;
    }

    return divideAndConquer(nums, 0, nums.length - 1);
}

function divideAndConquer(nums: number[], left: number, right: number): number {
    if (left === right) {
        return nums[left]; // 单个元素的最大子序和就是该元素本身
    }

    const mid = Math.floor((left + right) / 2);

    // 分别求解左半部分、右半部分的最大子序和
    const leftMax = divideAndConquer(nums, left, mid);
    const rightMax = divideAndConquer(nums, mid + 1, right);

    // 求解跨越中点的最大子序和
    const crossMax = maxCrossingSum(nums, left, mid, right);

    // 返回三者中的最大值
    return Math.max(leftMax, rightMax, crossMax);
}

function maxCrossingSum(nums: number[], left: number, mid: number, right: number): number {
    let leftSum = -Infinity;
    let sum = 0;

    // 从中点向左计算最大子序和
    for (let i = mid; i >= left; i--) {
        sum += nums[i];
        leftSum = Math.max(leftSum, sum);
    }

    let rightSum = -Infinity;
    sum = 0;

    // 从中点向右计算最大子序和
    for (let i = mid + 1; i <= right; i++) {
        sum += nums[i];
        rightSum = Math.max(rightSum, sum);
    }

    // 返回跨越中点的最大子序和
    return leftSum + rightSum;
}

// 示例
const nums: number[] = [-2, 1, -3, 4, -1, 2, 1, -5, 4];
console.log(maxSubArray(nums)); // 输出: 6 (子数组 [4, -1, 2, 1] 的和最大)

算法的时间复杂度为 O(n log n),由于把数组分成两半之后递归,因此空间复杂度为O(log n)。

解法二

运用动态规划求解。在遍历数组的过程中,判断 nums[i] 的值是否应该并入之前的序列 prev 中,如果 nums[i] > prev + nums[i],意味着 nums[i] 应该单独成为一个序列,否则该并入 prev 中形成一个比自己更大的序列。maxAn 则是从所有的序列和中取最大值。

ini 复制代码
function maxSubArray(nums: number[]): number {
    let maxAn = nums[0],prev = nums[0],i = 1
    const len = nums.length
    while(i < len) {
        prev = Math.max(prev + nums[i],nums[i])
        maxAn = Math.max(maxAn,prev)
        i++
    }
    return maxAn
};

时间复杂度O(n),空间复杂度O(1)。这种方法避免了递归调用和栈空间的开销,将分治算法转化为迭代的形式,更容易理解和实现。

相关推荐
菜鸟求带飞_5 分钟前
算法打卡:第十一章 图论part01
java·数据结构·算法
浅念同学6 分钟前
算法.图论-建图/拓扑排序及其拓展
算法·图论
是小Y啦23 分钟前
leetcode 106.从中序与后续遍历序列构造二叉树
数据结构·算法·leetcode
liuyang-neu33 分钟前
力扣 42.接雨水
java·算法·leetcode
y_dd40 分钟前
【machine learning-12-多元线性回归】
算法·机器学习·线性回归
m0_6312704040 分钟前
标准c语言(一)
c语言·开发语言·算法
万河归海42840 分钟前
C语言——二分法搜索数组中特定元素并返回下标
c语言·开发语言·数据结构·经验分享·笔记·算法·visualstudio
小周的C语言学习笔记1 小时前
鹏哥C语言36-37---循环/分支语句练习(折半查找算法)
c语言·算法·visual studio
y_dd1 小时前
【machine learning-七-线性回归之成本函数】
算法·回归·线性回归
小魏冬琅1 小时前
K-means 算法的介绍与应用
算法·机器学习·kmeans