算法(TS):最大子序和

最大子序和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]

输出:6

解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]

输出:1

示例 3:

输入:nums = [5,4,-1,7,8]

输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

解法一

使用分治算法求解最大子序和问题的思路是将数组分成两半,分别求解左半部分的最大子序和、右半部分的最大子序和,以及跨越中点的最大子序和。这三个值中的最大值即为整个数组的最大子序和。

ini 复制代码
function maxSubArray(nums: number[]): number {
    if (nums.length === 0) {
        return 0;
    }

    return divideAndConquer(nums, 0, nums.length - 1);
}

function divideAndConquer(nums: number[], left: number, right: number): number {
    if (left === right) {
        return nums[left]; // 单个元素的最大子序和就是该元素本身
    }

    const mid = Math.floor((left + right) / 2);

    // 分别求解左半部分、右半部分的最大子序和
    const leftMax = divideAndConquer(nums, left, mid);
    const rightMax = divideAndConquer(nums, mid + 1, right);

    // 求解跨越中点的最大子序和
    const crossMax = maxCrossingSum(nums, left, mid, right);

    // 返回三者中的最大值
    return Math.max(leftMax, rightMax, crossMax);
}

function maxCrossingSum(nums: number[], left: number, mid: number, right: number): number {
    let leftSum = -Infinity;
    let sum = 0;

    // 从中点向左计算最大子序和
    for (let i = mid; i >= left; i--) {
        sum += nums[i];
        leftSum = Math.max(leftSum, sum);
    }

    let rightSum = -Infinity;
    sum = 0;

    // 从中点向右计算最大子序和
    for (let i = mid + 1; i <= right; i++) {
        sum += nums[i];
        rightSum = Math.max(rightSum, sum);
    }

    // 返回跨越中点的最大子序和
    return leftSum + rightSum;
}

// 示例
const nums: number[] = [-2, 1, -3, 4, -1, 2, 1, -5, 4];
console.log(maxSubArray(nums)); // 输出: 6 (子数组 [4, -1, 2, 1] 的和最大)

算法的时间复杂度为 O(n log n),由于把数组分成两半之后递归,因此空间复杂度为O(log n)。

解法二

运用动态规划求解。在遍历数组的过程中,判断 nums[i] 的值是否应该并入之前的序列 prev 中,如果 nums[i] > prev + nums[i],意味着 nums[i] 应该单独成为一个序列,否则该并入 prev 中形成一个比自己更大的序列。maxAn 则是从所有的序列和中取最大值。

ini 复制代码
function maxSubArray(nums: number[]): number {
    let maxAn = nums[0],prev = nums[0],i = 1
    const len = nums.length
    while(i < len) {
        prev = Math.max(prev + nums[i],nums[i])
        maxAn = Math.max(maxAn,prev)
        i++
    }
    return maxAn
};

时间复杂度O(n),空间复杂度O(1)。这种方法避免了递归调用和栈空间的开销,将分治算法转化为迭代的形式,更容易理解和实现。

相关推荐
JohnFF20 分钟前
48. 旋转图像
数据结构·算法·leetcode
bbc12122620 分钟前
AT_abc306_b [ABC306B] Base 2
算法
生锈的键盘29 分钟前
推荐算法实践:movielens数据集
算法
董董灿是个攻城狮29 分钟前
Transformer 通关秘籍9:词向量的数值实际上是特征
算法
林泽毅38 分钟前
SwanLab x EasyR1:多模态LLM强化学习后训练组合拳,让模型进化更高效
算法·llm·强化学习
小林熬夜学编程40 分钟前
【高并发内存池】第八弹---脱离new的定长内存池与多线程malloc测试
c语言·开发语言·数据结构·c++·算法·哈希算法
刚入门的大一新生1 小时前
归并排序延伸-非递归版本
算法·排序算法
独好紫罗兰1 小时前
洛谷题单3-P1980 [NOIP 2013 普及组] 计数问题-python-流程图重构
开发语言·python·算法
独好紫罗兰1 小时前
洛谷题单3-P1009 [NOIP 1998 普及组] 阶乘之和-python-流程图重构
开发语言·python·算法
曦月逸霜1 小时前
蓝桥杯高频考点——高精度(含C++源码)
c++·算法·蓝桥杯