算法(TS):最大子序和

最大子序和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]

输出:6

解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]

输出:1

示例 3:

输入:nums = [5,4,-1,7,8]

输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

解法一

使用分治算法求解最大子序和问题的思路是将数组分成两半,分别求解左半部分的最大子序和、右半部分的最大子序和,以及跨越中点的最大子序和。这三个值中的最大值即为整个数组的最大子序和。

ini 复制代码
function maxSubArray(nums: number[]): number {
    if (nums.length === 0) {
        return 0;
    }

    return divideAndConquer(nums, 0, nums.length - 1);
}

function divideAndConquer(nums: number[], left: number, right: number): number {
    if (left === right) {
        return nums[left]; // 单个元素的最大子序和就是该元素本身
    }

    const mid = Math.floor((left + right) / 2);

    // 分别求解左半部分、右半部分的最大子序和
    const leftMax = divideAndConquer(nums, left, mid);
    const rightMax = divideAndConquer(nums, mid + 1, right);

    // 求解跨越中点的最大子序和
    const crossMax = maxCrossingSum(nums, left, mid, right);

    // 返回三者中的最大值
    return Math.max(leftMax, rightMax, crossMax);
}

function maxCrossingSum(nums: number[], left: number, mid: number, right: number): number {
    let leftSum = -Infinity;
    let sum = 0;

    // 从中点向左计算最大子序和
    for (let i = mid; i >= left; i--) {
        sum += nums[i];
        leftSum = Math.max(leftSum, sum);
    }

    let rightSum = -Infinity;
    sum = 0;

    // 从中点向右计算最大子序和
    for (let i = mid + 1; i <= right; i++) {
        sum += nums[i];
        rightSum = Math.max(rightSum, sum);
    }

    // 返回跨越中点的最大子序和
    return leftSum + rightSum;
}

// 示例
const nums: number[] = [-2, 1, -3, 4, -1, 2, 1, -5, 4];
console.log(maxSubArray(nums)); // 输出: 6 (子数组 [4, -1, 2, 1] 的和最大)

算法的时间复杂度为 O(n log n),由于把数组分成两半之后递归,因此空间复杂度为O(log n)。

解法二

运用动态规划求解。在遍历数组的过程中,判断 nums[i] 的值是否应该并入之前的序列 prev 中,如果 nums[i] > prev + nums[i],意味着 nums[i] 应该单独成为一个序列,否则该并入 prev 中形成一个比自己更大的序列。maxAn 则是从所有的序列和中取最大值。

ini 复制代码
function maxSubArray(nums: number[]): number {
    let maxAn = nums[0],prev = nums[0],i = 1
    const len = nums.length
    while(i < len) {
        prev = Math.max(prev + nums[i],nums[i])
        maxAn = Math.max(maxAn,prev)
        i++
    }
    return maxAn
};

时间复杂度O(n),空间复杂度O(1)。这种方法避免了递归调用和栈空间的开销,将分治算法转化为迭代的形式,更容易理解和实现。

相关推荐
daily_23337 分钟前
数据结构——小小二叉树第三幕(链式结构的小拓展,二叉树的创建,深入理解二叉树的遍历)超详细!!!
数据结构·c++·算法
浦东新村轱天乐29 分钟前
神经网络反向传播算法公式推导
神经网络·算法·机器学习
SUN_Gyq40 分钟前
什么是 C++ 中的模板特化和偏特化? 如何进行模板特化和偏特化?
开发语言·c++·算法
码上一元44 分钟前
【百日算法计划】:每日一题,见证成长(026)
算法
愿天垂怜1 小时前
【C++】C++11引入的新特性(1)
java·c语言·数据结构·c++·算法·rust·哈希算法
kitesxian1 小时前
Leetcode200. 岛屿数量(HOT100)
算法·深度优先
LNTON羚通1 小时前
算法定制LiteAIServer视频智能分析平台工业排污检测算法智控环保监管
算法·目标检测·音视频·监控·视频监控
好好学习O(∩_∩)O1 小时前
11-23刷题记录
算法·leetcode·职场和发展
bingw01142 小时前
华为机试HJ62 查找输入整数二进制中1的个数
数据结构·算法·华为
苏言の狗2 小时前
小R的二叉树探险 | 模拟
c语言·数据结构·算法·宽度优先