模式识别与机器学习-特征选择和提取

模式识别与机器学习-特征选择和提取

谨以此博客作为复习期间的记录。

常见分类问题的流程,数据预处理和特征选择提取时机器学习环节中最重要的两个流程。这两个环节直接决定了最终性能的上下限,本部分记录一下特征提取和选择部分(特征工程)

特征选择 可以表示为:从一个包含 n 个度量值的集合 { x 1 , x 2 , ... , x n } \{x_1, x_2, \dots, x_n\} {x1,x2,...,xn} 中,按照某个准则选择出一个子集,用作分类的特征,这个子集具有降维的效果(m 维,其中 m < n)。

特征提取 可以表示为:通过某种变换,将原始特征集合 ( x 1 , x 2 , ... , x n ) (x_1, x_2, \dots, x_n) (x1,x2,...,xn) 转换成一个包含 m 个新特征 ( y 1 , y 2 , ... , y m ) (y_1, y_2, \dots, y_m) (y1,y2,...,ym) 的集合(其中 m < n),这些新特征作为新的分类特征(有时称为二次特征)。

这两种方法的目的都在于在保留尽可能多的识别信息的前提下,降低特征空间的维度,以便有效地进行分类。

特征选择

一些距离测度公式






独立特征的选择准则

一般特征的散布矩阵准则

离散K-L变换


相关推荐
胖头鱼的鱼缸(尹海文)33 分钟前
数据库管理-第376期 Oracle AI DB 23.26新特性一览(20251016)
数据库·人工智能·oracle
瑞禧生物ruixibio36 分钟前
4-ARM-PEG-Pyrene(2)/Biotin(2),多功能化聚乙二醇修饰荧光标记生物分子的设计与应用探索
arm开发·人工智能
大千AI助手40 分钟前
Huber损失函数:稳健回归的智慧之选
人工智能·数据挖掘·回归·损失函数·mse·mae·huber损失函数
墨利昂1 小时前
10.17RNN情感分析实验:加载预训练词向量模块整理
人工智能·rnn·深度学习
【建模先锋】1 小时前
一区直接写!CEEMDAN分解 + Informer-LSTM +XGBoost组合预测模型
人工智能·lstm·ceemdan·预测模型·风速预测·时间序列预测模型
fsnine1 小时前
YOLOv2原理介绍
人工智能·计算机视觉·目标跟踪
倔强的石头1061 小时前
AI修图革命:IOPaint+cpolar让废片拯救触手可及
人工智能·cpolar·iopaint
文火冰糖的硅基工坊2 小时前
[人工智能-大模型-15]:大模型典型产品对比 - 数字人
人工智能·大模型·大语言模型
JJJJ_iii2 小时前
【机器学习05】神经网络、模型表示、前向传播、TensorFlow实现
人工智能·pytorch·python·深度学习·神经网络·机器学习·tensorflow
William.csj2 小时前
服务器/Pytorch——对于只调用一次的函数初始化,放在for训练外面和里面的差异
人工智能·pytorch·python