AlignBench:量身打造的中文大语言模型对齐评测

对齐(Alignment),是指大语言模型(LLM)与人类意图的一致性。换言之,就是让LLM生成的结果更加符合人类的预期,包括遵循人类的指令,理解人类的意图,进而能产生有帮助的回答等。对齐是决定LLM能否在实际场景中得到真正应用的关键因素。因此,评估模型的对齐水平显得至关重要 ------ 如果没有评估,我们就无法判断模型的优劣。

然而,至今为止,中文评测领域关于对齐的评测仍然是一片空白。当前广泛使用的一些评测数据集,如 MMLU,C-Eval 等,与真实使用场景的差别较大,不能有效评估模型的指令遵循能力。针对对齐水平的英文评测数据集,如 MT-Bench,AlpacaEval等,受限于其语言、数量、评测方式,也并不能有效评估中文大模型的对齐水平。考虑到以上因素,以及实际的需求,智谱清言团队推出了AlignBench。

论文:https://arxiv.org/abs/2311.18743

数据、代码:https://github.com/THUDM/AlignBench

项目网站:LLMBench

AlignBench是一个多维度、综合性的评测基准。目前来看,这是第一个专为中文大模型设计,能够在多维度上细致评测模型和人类意图对齐水平的评测基准。将 AlignBench 在评测数据和评测方法上与其他基准的对比情况总结如下:

为了让开发人员能够更加高效地完成评估,作者也开发了自动评估模型 CritiqueLLM ,它是一个能够达到 GPT-4 95% 评估能力的专用的评测模型。可以在 AlignBench 网站上使用 CritiqueLLM 进行评测。

数据集

AlignBench 从 ChatGLM 真实的使用场景中构建,经过初步构造,敏感性筛查,参考答案生成,难度筛选等步骤,构建了具有真实性、挑战性的评测数据集。AlignBench 构建了综合全面的分类体系,分为 8 个大类。

评测方法

AlignBench 使用评分模型(GPT-4,CritiqueLLM)为每个模型的回答打 1-10 的综合分数,代表其回答质量。AlignBench 构建了多维度、规则校准的模型评测方法,有效提升了模型评分和人类评分的一致性,以及模型评价的质量。

  1. 多维度:AlignBench 针对每个种类定制了多个细分的评测维度(如创造性、逻辑性等等)。

  2. 规则校准:AlignBench 引入了细致的打分规则,提升和人类的一致程度。

评测表明,所提出的模型评测方法提高了和人类评分的一致性。在生成的分析上,所提出的方法能够显著提高分析的质量。在对分析质量的成对评估中,所提出的方法分别以 12.4% 和 20.40% 的胜负差显著胜出。

评测结果

使用 gpt-4-0613 和 CritiqueLLM 分别作为评分模型对 17 个中文大模型进行了评测,结果分别如下。

结果表明:

  1. 中文大模型相比于 gpt-4,在逻辑推理能力上差距较大。

  2. 顶尖中文大模型相比于 gpt-4,在中文相关能力(尤其是中文理解类)能取得相近甚至更好的表现。

  3. 中文大模型的开源活力充沛,顶尖开源模型对齐表现接近闭源模型,已处于同一梯队。

相关推荐
aneasystone本尊16 小时前
深入 Dify 的应用运行器之外部数据扩展
人工智能
java1234_小锋16 小时前
TensorFlow2 Python深度学习 - 生成对抗网络(GAN)实例
python·深度学习·tensorflow·tensorflow2
AIbase202416 小时前
GEO 长尾关键词实战策略:在生成式 AI 环境下抢占用户提问入口
人工智能
aneasystone本尊16 小时前
深入 Dify 的应用运行器之提示词组装
人工智能
吃饭睡觉发paper16 小时前
用于飞行时间深度去噪的空间层次感知残差金字塔网络
网络·人工智能·机器学习·计算机视觉
aneasystone本尊16 小时前
深入 Dify 的应用运行器之内容审核
人工智能
CoovallyAIHub16 小时前
一夜之间,大模型处理长文本的难题被DeepSeek新模型彻底颠覆!
深度学习·算法·计算机视觉
智驱力人工智能16 小时前
疲劳驾驶检测提升驾驶安全 疲劳行为检测 驾驶员疲劳检测系统 疲劳检测系统价格
人工智能·安全·目标检测·目标跟踪·视觉检测
墨香幽梦客17 小时前
塑胶制造生产ERP:有哪些系统值得关注
大数据·人工智能·制造
说私域17 小时前
开源AI大模型、AI智能名片与S2B2C商城系统:个体IP打造与价值赋能的新范式
人工智能·tcp/ip·开源