超维空间S2无人机使用说明书——31、使用yolov8进行目标识别

引言:为了提高yolo识别的质量,提高了yolo的版本,改用yolov8进行物体识别,同时系统兼容了低版本的yolo,包括基于C++的yolov3和yolov4,以及yolov7。

简介,为了提高识别速度,系统采用了GPU进行加速,在使用7W功率的情况,大概可以稳定在20FPS,满功率情况下可以适当提高。

硬件:D435摄像头,Jetson orin nano 8G

环境:ubuntu20.04,ros-noetic, yolov8

步骤一: 启动摄像头,获取摄像头发布的图像话题

javascript 复制代码
roslaunch realsense2_camera rs_camera.launch  

没有出现红色报错,出现如下界面,表明摄像头启动成功

步骤二:启动yolov8识别节点

javascript 复制代码
roslaunch yolov8_ros yolo_v8.launch 

launch文件如下,参数use_cpu设置为false,因为实际使用GPU加速,不是CPU跑,另外参数pub_topic是yolov8识别到目标后发布出来的物体在镜头中的位置,程序作了修改,直接给出目标物的中心位置,其中参数image_topic是订阅的节点话题,一定要与摄像头发布的实际话题名称对应上。

javascript 复制代码
<?xml version="1.0" encoding="utf-8"?>
<launch>

  <!-- Load Parameter -->
  
  <param name="use_cpu"           value="false" />

  <!-- Start yolov8 and ros wrapper -->
  <node pkg="yolov8_ros" type="yolo_v8.py" name="yolov8_ros" output="screen" >
    <param name="weight_path"       value="$(find yolov8_ros)/weights/yolov8n.pt"/>
    <param name="image_topic"       value="/camera/color/image_raw" />
    <param name="pub_topic"         value="/object_position" />
    <param name="camera_frame"      value="camera_color_frame"/>
    <param name="visualize"         value="false"/>
    <param name="conf"              value="0.3" />
  </node>
</launch>

出现如下界面表示yolov8启动成功

步骤三:打开rqt工具,查看识别效果

javascript 复制代码
rqt_image_view 

等待出现如下界面后,选择yolov8/detection_image查看yolov8识别效果

从图中可以看出,在7W功率的情况下,大概在18帧的效果,识别准确度比较高

相关推荐
A7bert7774 小时前
【YOLOv5部署至RK3588】模型训练→转换RKNN→开发板部署
c++·人工智能·python·深度学习·yolo·目标检测·机器学习
Coovally AI模型快速验证4 小时前
YOLOv8-SMOT:基于切片辅助训练与自适应运动关联的无人机视角小目标实时追踪框架
人工智能·深度学习·yolo·计算机视觉·目标跟踪·无人机
小O的算法实验室4 小时前
2024年Engineering SCI2区,面向工程管理的无人机巡检路径与调度,深度解析+性能实测
无人机·论文复现·智能算法·智能算法改进
是Dream呀5 小时前
YOLOv7:重新定义实时目标检测的技术突破
yolo·目标检测·目标跟踪
钓了猫的鱼儿12 小时前
无人机航拍数据集|第29期 无人机水稻稻穗目标检测YOLO数据集7894张yolov11/yolov8/yolov5可训练
yolo·目标检测·无人机·猫脸码客·无人机航拍数据集·无人机水稻稻穗目标检测
钓了猫的鱼儿12 小时前
无人机航拍数据集|第22期 无人机城市交通目标检测YOLO数据集8624张yolov11/yolov8/yolov5可训练
yolo·目标检测·无人机·猫脸码客·无人机航拍数据集·无人机城市交通目标检测数据集
云卓SKYDROID21 小时前
无人机延时模块技术难点解析
人工智能·无人机·高科技·云卓科技·延迟摄像
hixiong1231 天前
C# 编写一个XmlToDota的转换工具
开发语言·人工智能·yolo·c#
深瞳智检1 天前
目标检测数据集 第007期-基于yolo标注格式的茶叶病害检测数据集(含免费分享)
人工智能·深度学习·yolo·目标检测·计算机视觉
十八岁牛爷爷2 天前
通过官方文档详解Ultralytics YOLO 开源工程-熟练使用 YOLO11实现分割、分类、旋转框检测和姿势估计(附测试代码)
人工智能·yolo·目标跟踪