超维空间S2无人机使用说明书——31、使用yolov8进行目标识别

引言:为了提高yolo识别的质量,提高了yolo的版本,改用yolov8进行物体识别,同时系统兼容了低版本的yolo,包括基于C++的yolov3和yolov4,以及yolov7。

简介,为了提高识别速度,系统采用了GPU进行加速,在使用7W功率的情况,大概可以稳定在20FPS,满功率情况下可以适当提高。

硬件:D435摄像头,Jetson orin nano 8G

环境:ubuntu20.04,ros-noetic, yolov8

步骤一: 启动摄像头,获取摄像头发布的图像话题

javascript 复制代码
roslaunch realsense2_camera rs_camera.launch  

没有出现红色报错,出现如下界面,表明摄像头启动成功

步骤二:启动yolov8识别节点

javascript 复制代码
roslaunch yolov8_ros yolo_v8.launch 

launch文件如下,参数use_cpu设置为false,因为实际使用GPU加速,不是CPU跑,另外参数pub_topic是yolov8识别到目标后发布出来的物体在镜头中的位置,程序作了修改,直接给出目标物的中心位置,其中参数image_topic是订阅的节点话题,一定要与摄像头发布的实际话题名称对应上。

javascript 复制代码
<?xml version="1.0" encoding="utf-8"?>
<launch>

  <!-- Load Parameter -->
  
  <param name="use_cpu"           value="false" />

  <!-- Start yolov8 and ros wrapper -->
  <node pkg="yolov8_ros" type="yolo_v8.py" name="yolov8_ros" output="screen" >
    <param name="weight_path"       value="$(find yolov8_ros)/weights/yolov8n.pt"/>
    <param name="image_topic"       value="/camera/color/image_raw" />
    <param name="pub_topic"         value="/object_position" />
    <param name="camera_frame"      value="camera_color_frame"/>
    <param name="visualize"         value="false"/>
    <param name="conf"              value="0.3" />
  </node>
</launch>

出现如下界面表示yolov8启动成功

步骤三:打开rqt工具,查看识别效果

javascript 复制代码
rqt_image_view 

等待出现如下界面后,选择yolov8/detection_image查看yolov8识别效果

从图中可以看出,在7W功率的情况下,大概在18帧的效果,识别准确度比较高

相关推荐
GIS数据转换器2 小时前
基于GIS与AI的社区‑商圈融合可视化平台
人工智能·信息可视化·无人机·智慧城市·制造
Deepoch3 小时前
Deepoc具身大模型无人机:开启智能飞行新纪元
科技·机器人·无人机·开发板·具身模型·deepoc
uWvvJWldyYUZ4 小时前
WCA 水循环算法优化 BP 神经网络(WCA - BPNN)回归预测在电厂运行数据中的应用
yolo
小Tomkk4 小时前
PyTorch +YOLO + Label Studio + 图像识别 深度学习项目实战 (一)
人工智能·pytorch·yolo
云卓SKYDROID5 小时前
飞控电机电子调速技术详解
人工智能·无人机·飞控·高科技·云卓科技
奔跑吧邓邓子6 小时前
YOLOv8目标检测:从理论到实战的飞跃之旅
yolo·目标检测·目标跟踪·理论到实战
lq mm7 小时前
3d-navi 3D导航模拟仿真项目复现
ros
ACALJJ328 小时前
大疆无人机M4T拍照定位
无人机
岑梓铭8 小时前
YOLO深度学习(计算机视觉)一很有用!!(进一步加快训练速度的操作)
人工智能·深度学习·神经网络·yolo·计算机视觉
巫婆理发2229 小时前
目标检测+YOLO
人工智能·yolo·目标检测