搞定Apache Superset

踩雷了无数次终于解决了Superset的一系列问题

现在是北京时间2023年12月27日,亲测有效。

Superset概述

Apache Superset是一个现代的数据探索和可视化平台。它功能强大且十分易用,可对接各种数据源,包括很多现代的大数据分析引擎,拥有丰富的图表展示形式,并且支持自定义仪表盘。

特别注意:

下面的教程所使用的服务器操作系统为CentOS 7,Superset对接的数据源为MySQL数据库。

Superset官网地址:Welcome | Superset

安装Python环境

Superset是由Python语言编写的Web应用,要求Python3.7以上的环境。

安装Miniconda

conda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同Python版本的软件包及其依赖,并能够在不同的Python环境之间切换,Anaconda包括Conda、Python以及一大堆安装好的工具包,比如:numpy、pandas等,Miniconda包括Conda、Python。

此处,我们不需要如此多的工具包,故选择MiniConda。

下载Miniconda(Python3版本)

下载地址:https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

安装Miniconda

(1)执行以下命令进行安装,并按照提示操作,直到安装完成。

[zhangxi@hadoop102 lib]$ bash Miniconda3-latest-Linux-x86_64.sh

(2)在安装过程中,出现以下提示时,可以指定安装路径 /opt/module/miniconda3

(3)出现以下字样,即为安装完成

3)加载环境变量配置文件,使之生效

[zhangxi@hadoop102 lib]$ source ~/.bashrc

4)取消激活base环境

Miniconda安装完成后,每次打开终端都会激活其默认的base环境,我们可通过以下命令,禁止激活默认base环境。

[zhangxi@hadoop102 lib]$ conda config --set auto_activate_base false

创建Python3.8环境

1)配置conda国内镜像(此处可不配置,国外镜像比清华镜像更快)

(base) [zhangxi@hadoop102 ~]$ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
(base) [zhangxi@hadoop102 ~]$ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
(base) [zhangxi@hadoop102 ~]$ conda config --set show_channel_urls yes

查看conda的镜像channel配置

[zhangxi@hadoop102 ~]$ conda config --show channels
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - defaults

删除清华镜像,继续用默认的

[zhangxi@hadoop102 ~]$ conda config --remove-key channels
[zhangxi@hadoop102 ~]$ conda config --show channels
  - defaults

2)创建Python3.8环境

(base) [zhangxi@hadoop102 ~]$ conda create --name superset python=3.8.16

说明:conda环境管理常用命令

创建环境:conda create -n env_name

查看所有环境:conda info --envs

删除一个环境:conda remove -n env_name --all

3)激活superset环境

(base) [zhangxi@hadoop102 ~]$ conda activate superset

激活后效果如下图所示

说明:退出当前环境

(superset) [zhangxi@hadoop102 ~]$ conda deactivate

4)执行python -V命令查看python版本

(superset) [zhangxi@hadoop102 ~]$ python -V
Python 3.8.16

Superset部署

安装依赖

安装Superset之前,需安装以下所需依赖。

(superset) [zhangxi@hadoop102 ~]$ sudo yum install -y gcc gcc-c++ libffi-devel python-devel python-pip python-wheel python-setuptools openssl-devel cyrus-sasl-devel openldap-devel

安装Superset

1)更新pip

(superset) [zhangxi@hadoop102 ~]$ pip install --upgrade pip -i https://pypi.douban.com/simple/

说明:pip是python的包管理工具,可以和centos中的yum类比

2)安装Supetset

vim base.txt文件至任意路径,添加以下内容

aiohttp==3.8.1
    # via slackclient
aiosignal==1.2.0
    # via aiohttp
alembic==1.6.5
    # via flask-migrate
amqp==5.1.0
    # via kombu
apispec[yaml]==3.3.2
    # via flask-appbuilder
async-timeout==4.0.2
    # via aiohttp
attrs==21.2.0
    # via
    #   aiohttp
    #   jsonschema
babel==2.9.1
    # via flask-babel
backoff==1.11.1
    # via apache-superset
billiard==3.6.4.0
    # via celery
bleach==3.3.1
    # via apache-superset
brotli==1.0.9
    # via flask-compress
cachelib==0.4.1
    # via apache-superset
celery==5.2.2
    # via apache-superset
cffi==1.14.6
    # via cryptography
charset-normalizer==2.0.4
    # via aiohttp
click==8.0.4
    # via
    #   apache-superset
    #   celery
    #   click-didyoumean
    #   click-plugins
    #   click-repl
    #   flask
    #   flask-appbuilder
click-didyoumean==0.3.0
    # via celery
click-plugins==1.1.1
    # via celery
click-repl==0.2.0
    # via celery
colorama==0.4.4
    # via
    #   apache-superset
    #   flask-appbuilder
convertdate==2.3.2
    # via holidays
cron-descriptor==1.2.24
    # via apache-superset
croniter==1.0.15
    # via apache-superset
cryptography==3.4.7
    # via apache-superset
deprecation==2.1.0
    # via apache-superset
dnspython==2.1.0
    # via email-validator
email-validator==1.1.3
    # via flask-appbuilder
flask==2.0.3
    # via
    #   apache-superset
    #   flask-appbuilder
    #   flask-babel
    #   flask-caching
    #   flask-compress
    #   flask-jwt-extended
    #   flask-login
    #   flask-migrate
    #   flask-sqlalchemy
    #   flask-wtf
flask-appbuilder==4.1.3
    # via apache-superset
flask-babel==1.0.0
    # via flask-appbuilder
flask-caching==1.10.1
    # via apache-superset
flask-compress==1.10.1
    # via apache-superset
flask-jwt-extended==4.3.1
    # via flask-appbuilder
flask-login==0.4.1
    # via flask-appbuilder
flask-migrate==3.1.0
    # via apache-superset
flask-sqlalchemy==2.5.1
    # via
    #   flask-appbuilder
    #   flask-migrate
flask-talisman==0.8.1
    # via apache-superset
flask-wtf==0.14.3
    # via
    #   apache-superset
    #   flask-appbuilder
frozenlist==1.3.0
    # via
    #   aiohttp
    #   aiosignal
func-timeout==4.3.5
    # via apache-superset
geographiclib==1.52
    # via geopy
geopy==2.2.0
    # via apache-superset
graphlib-backport==1.0.3
    # via apache-superset
gunicorn==20.1.0
    # via apache-superset
hashids==1.3.1
    # via apache-superset
holidays==0.10.3
    # via apache-superset
humanize==3.11.0
    # via apache-superset
idna==3.2
    # via
    #   email-validator
    #   yarl
isodate==0.6.0
    # via apache-superset
itsdangerous==2.1.1
    # via
    #   flask
    #   flask-wtf
jinja2==3.0.3
    # via
    #   flask
    #   flask-babel
jsonschema==3.2.0
    # via flask-appbuilder
kombu==5.2.4
    # via celery
korean-lunar-calendar==0.2.1
    # via holidays
mako==1.1.4
    # via alembic
markdown==3.3.4
    # via apache-superset
markupsafe==2.0.1
    # via
    #   jinja2
    #   mako
    #   wtforms
marshmallow==3.13.0
    # via
    #   flask-appbuilder
    #   marshmallow-enum
    #   marshmallow-sqlalchemy
marshmallow-enum==1.5.1
    # via flask-appbuilder
marshmallow-sqlalchemy==0.23.1
    # via flask-appbuilder
msgpack==1.0.2
    # via apache-superset
multidict==5.1.0
    # via
    #   aiohttp
    #   yarl
numpy==1.22.1
    # via
    #   apache-superset
    #   pandas
    #   pyarrow
packaging==21.3
    # via
    #   bleach
    #   deprecation
pandas==1.3.4
    # via apache-superset
parsedatetime==2.6
    # via apache-superset
pgsanity==0.2.9
    # via apache-superset
polyline==1.4.0
    # via apache-superset
prison==0.2.1
    # via flask-appbuilder
prompt-toolkit==3.0.28
    # via click-repl
pyarrow==5.0.0
    # via apache-superset
pycparser==2.20
    # via cffi
pyjwt==2.4.0
    # via
    #   apache-superset
    #   flask-appbuilder
    #   flask-jwt-extended
pymeeus==0.5.11
    # via convertdate
pyparsing==3.0.6
    # via
    #   apache-superset
    #   packaging
pyrsistent==0.16.1
    # via jsonschema
python-dateutil==2.8.2
    # via
    #   alembic
    #   apache-superset
    #   croniter
    #   flask-appbuilder
    #   holidays
    #   pandas
python-dotenv==0.19.0
    # via apache-superset
python-editor==1.0.4
    # via alembic
python-geohash==0.8.5
    # via apache-superset
pytz==2021.3
    # via
    #   babel
    #   celery
    #   convertdate
    #   flask-babel
    #   pandas
pyyaml==5.4.1
    # via
    #   apache-superset
    #   apispec
redis==3.5.3
    # via apache-superset
selenium==3.141.0
    # via apache-superset
simplejson==3.17.3
    # via apache-superset
six==1.16.0
    # via
    #   bleach
    #   click-repl
    #   flask-talisman
    #   holidays
    #   isodate
    #   jsonschema
    #   polyline
    #   prison
    #   pyrsistent
    #   python-dateutil
    #   sqlalchemy-utils
    #   wtforms-json
slackclient==2.5.0
    # via apache-superset
sqlalchemy==1.3.24
    # via
    #   alembic
    #   apache-superset
    #   flask-appbuilder
    #   flask-sqlalchemy
    #   marshmallow-sqlalchemy
    #   sqlalchemy-utils
sqlalchemy-utils==0.37.8
    # via
    #   apache-superset
    #   flask-appbuilder
sqlparse==0.3.0
    # via apache-superset
tabulate==0.8.9
    # via apache-superset
typing-extensions==3.10.0.0
    # via apache-superset
urllib3==1.26.6
    # via selenium
vine==5.0.0
    # via
    #   amqp
    #   celery
    #   kombu
wcwidth==0.2.5
    # via prompt-toolkit
webencodings==0.5.1
    # via bleach
werkzeug==2.0.3
    # via
    #   flask
    #   flask-jwt-extended
wtforms==2.3.3
    # via
    #   flask-appbuilder
    #   flask-wtf
    #   wtforms-json
wtforms-json==0.3.3
    # via apache-superset
yarl==1.6.3
    # via aiohttp

# The following packages are considered to be unsafe in a requirements file:
# setuptools

查看文件

(superset) [zhangxi@hadoop102 ~]$ ll ~
总用量 12
-rw-r--r--. 1 zhangxi zhangxi 5795 2月   3 15:27 base.txt
drwxrwxr-x. 2 zhangxi zhangxi 4096 2月   6 11:42 bin

该文件可用于指定superset依赖组件及版本,下载地址及内容如下。

https://raw.githubusercontent.com/apache/superset/2.0.0/requirements/base.txt

在base.txt所在目录下执行如下命令,安装SuperSet

(superset) [zhangxi@hadoop102 ~]$ pip install apache-superset==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple -r base.txt

说明:

  • -i的作用是指定镜像,这里选择国内镜像

  • -r的作用是指定superset依赖组件及相应版本,指向base.txt文件即可

配置Superset元数据库

Superset的元数据支持MySQL、PostgreSQL,此处采用MySQL。

1)在MySQL中创建superset元数据库

mysql> CREATE DATABASE superset DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;

2)创建superset用户

mysql> create user superset@'%' identified WITH mysql_native_password BY 'superset';
mysql> grant all privileges on *.* to superset@'%' with grant option;
mysql> flush privileges;

3)修改superset配置文件

(superset) [zhangxi@hadoop102 ~]$ vim /opt/module/miniconda3/envs/superset/lib/python3.8/site-packages/superset/config.py

修改内容如下:(184、185行)

# SQLALCHEMY_DATABASE_URI = "sqlite:///" + os.path.join(DATA_DIR, "superset.db")
SQLALCHEMY_DATABASE_URI = 'mysql://superset:superset@hadoop102:3306/superset?charset=utf8'

4)安装python msyql驱动

(superset) [zhangxi@hadoop102 ~]$ conda install mysqlclient

5)初始化superset元数据

(superset) [zhangxi@hadoop102 ~]$ export FLASK_APP=superset
(superset) [zhangxi@hadoop102 ~]$ superset db upgrade

SupersetSet初始化

1)创建管理员用户

(superset) [zhangxi@hadoop102 ~]$ superset fab create-admin

2)初始化superset

(superset) [zhangxi@hadoop102 ~]$ superset init

启动Supterset

1)安装gunicorn

(superset) [zhangxi@hadoop102 ~]$ pip install gunicorn -i https://pypi.douban.com/simple/

说明:gunicorn是一个Python Web Server,可以和java中的Tomcat类比

2)启动Superset

确保当前conda环境为superset,及下图所示

启动

(superset) [zhangxi@hadoop102 ~]$ gunicorn --workers 5 --timeout 120 --bind hadoop102:8787  "superset.app:create_app()" --daemon

说明:

  • --workers:指定进程个数
  • --timeout:worker进程超时时间,超时会自动重启
  • --bind:绑定本机地址,即为Superset访问地址
  • --daemon:后台运行

登录Superset

访问http://hadoop102:8787

3)停止superset

(1)停掉gunicorn进程

(superset) [zhangxi@hadoop102 ~]$ ps -ef | awk '/superset/ && !/awk/{print $2}' | xargs kill -9

(2)退出superset环境

(superset) [zhangxi@hadoop102 ~]$ conda deactivate

superset启停脚本

1)创建superset.sh文件

[zhangxi@hadoop102 bin]$ vim superset.sh

内容如下

#!/bin/bash

superset_status(){
    result=`ps -ef | awk '/gunicorn/ && !/awk/{print $2}' | wc -l`
    if [[ $result -eq 0 ]]; then
        return 0
    else
        return 1
    fi
}
superset_start(){
        source ~/.bashrc
        superset_status >/dev/null 2>&1
        if [[ $? -eq 0 ]]; then
            conda activate superset ; gunicorn --workers 5 --timeout 120 --bind hadoop102:8787 --daemon 'superset.app:create_app()'
        else
            echo "superset正在运行"
        fi

}

superset_stop(){
    superset_status >/dev/null 2>&1
    if [[ $? -eq 0 ]]; then
        echo "superset未在运行"
    else
        ps -ef | awk '/gunicorn/ && !/awk/{print $2}' | xargs kill -9
    fi
}


case $1 in
    start )
        echo "启动Superset"
        superset_start
    ;;
    stop )
        echo "停止Superset"
        superset_stop
    ;;
    restart )
        echo "重启Superset"
        superset_stop
        superset_start
    ;;
    status )
        superset_status >/dev/null 2>&1
        if [[ $? -eq 0 ]]; then
            echo "superset未在运行"
        else
            echo "superset正在运行"
        fi
esac

2)加执行权限

[zhangxi@hadoop102 bin]$ chmod +x superset.sh

3)测试

启动superset

[zhangxi@hadoop102 bin]$ superset.sh start

停止superset

[zhangxi@hadoop102 bin]$ superset.sh stop

关于Apache Superset的使用后续讲解

相关推荐
大数据编程之光4 分钟前
Hive 查询各类型专利 top10 申请人及专利申请数
大数据·数据仓库·hive·hadoop
杰克逊的日记6 分钟前
Hive详解
数据仓库·hive·hadoop
上辈子杀猪这辈子学IT22 分钟前
【Zookeeper集群搭建】安装zookeeper、zookeeper集群配置、zookeeper启动与关闭、zookeeper的shell命令操作
linux·hadoop·zookeeper·centos·debian
Hsu_kk3 小时前
Hive 查询用户连续三天登录的所有记录
数据仓库·hive·hadoop
kakwooi6 小时前
Hadoop---MapReduce(3)
大数据·hadoop·mapreduce
windy1a6 小时前
【c知道】Hadoop工作原理。
hadoop
油头少年_w12 小时前
大数据导论及分布式存储HadoopHDFS入门
大数据·hadoop·hdfs
工业互联网专业14 小时前
Python毕业设计选题:基于Hadoop的租房数据分析系统的设计与实现
vue.js·hadoop·python·flask·毕业设计·源码·课程设计
bigdata-余建新1 天前
HDFS和HBase跨集群数据迁移 源码
hadoop·hdfs·hbase
Mephisto.java1 天前
【大数据学习 | kafka高级部分】文件清除原理
大数据·hadoop·zookeeper·spark·kafka·hbase·flume