【数据挖掘】模型融合

模型融合是指将多个不同的机器学习模型组合起来,通过综合多个模型的预测结果来得到更准确的预测结果。模型融合可以提高模型的鲁棒性,减小模型的方差,提高模型的泛化能力。

常见的模型融合方法包括平均法、投票法和堆叠法。

  1. 平均法(Averaging):将多个模型的预测结果进行平均,可以是简单的算术平均或加权平均。平均法适用于模型预测结果的方差较小的情况。

  2. 投票法(Voting):根据多个模型的预测结果,统计出现频率最高的预测结果作为最终的预测结果。投票法适用于模型预测结果的方差较大的情况。有简单投票法,加权投票法,硬投票法。

  3. 堆叠法(stacking/blending):将多个模型的预测结果作为输入,训练一个新的模型来得到最终的预测结果。堆叠法可以将不同模型的优点结合起来,提高预测准确度。stacking是构建多层模型,并利用预测结果再做拟合预测;blending是选取部分数据预测训练得到预测结果作为新特征,带入剩下的数据中预测。blending只有一层,而stacking有多层。

  4. 综合法:有排序融合,log融合

  5. boosting/bagging:树分类的提升方法,在xgboost,Adaboost,GBDT中已经用到

在进行模型融合时,需要注意选择不同模型之间具有较低的相关性,避免多个模型预测结果的冗余。同时,还需要根据具体问题选择适当的模型融合方法。

相关推荐
曦月逸霜9 分钟前
第34次CCF-CSP认证真题解析(目标300分做法)
数据结构·c++·算法
海的诗篇_1 小时前
移除元素-JavaScript【算法学习day.04】
javascript·学习·算法
大写-凌祁1 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
自动驾驶小卡2 小时前
A*算法实现原理以及实现步骤(C++)
算法
Unpredictable2222 小时前
【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
c++·笔记·算法·ubuntu·计算机视觉
编程绿豆侠2 小时前
力扣HOT100之多维动态规划:1143. 最长公共子序列
算法·leetcode·动态规划
柯南二号2 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
珂朵莉MM2 小时前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人
fail_to_code3 小时前
递归法的递归函数何时需要返回值
算法