SelfAttention和MultiHeadAttion实现demo

#encoding:utf-8

from math import sqrt

import torch

import torch.nn as nn

class Self_Attention(nn.Module):

def init(self, input_dim, dim_k, dim_v):

super(Self_Attention, self). init()

self.q = nn.Linear(input_dim, dim_k)

self.k = nn.Linear(input_dim, dim_k)

self.v = nn.Linear(input_dim, dim_v)

self.norm_fact = 1 / sqrt(dim_k)

def forward(self, x):

print("x.shape:", x.shape)

print("q.shape:", self.q.shape)

Q = self.q(x)

print("Q.shape:", Q.shape)

K = self.k(x)

print("K.shape:", K.shape)

V = self.v(x)

print("V.shape:", V.shape)

atten = nn.Softmax(dim=-1)(torch.bmm(Q,K.permute(0,2,1))) * self.norm_fact

output = torch.bmm(atten, V)

return output

print("\n")

print("self attention:")

x = torch.randn(4,3,1024)

print(x)

print("input size:", x.size())

self_attention = Self_Attention(1024,128,5)

res = self_attention(x)

print("\n")

print(res)

print("output size:", res.size())

print("\n")

class Self_Attention_Muti_Head(nn.Module):

def init(self, input_dim, dim_k, dim_v, nums_head):

super(Self_Attention_Muti_Head, self).init()

assert dim_k % nums_head == 0

assert dim_v % nums_head == 0

self.q = nn.Linear(input_dim, dim_k)

self.k = nn.Linear(input_dim, dim_k)

self.v = nn.Linear(input_dim, dim_v)

self.nums_head = nums_head

self.dim_k = dim_k

self.dim_v = dim_v

self._norm_fact = 1 / sqrt(dim_k)

def forward(self, x):

Q = self.q(x).reshape(-1, x.shape[0], x.shape[1], self.dim_k//self.nums_head)

K = self.k(x).reshape(-1, x.shape[0], x.shape[1], self.dim_k//self.nums_head)

V = self.v(x).reshape(-1, x.shape[0], x.shape[1], self.dim_v//self.nums_head)

print("x.shape:", x.shape)

print("Q.shape", Q.size())

atten = nn.Softmax(dim=-1)(torch.matmul(Q, K.permute(0,1,3,2)))

output = torch.matmul(atten, V).reshape(x.shape[0], x.shape[1], -1)

return output

print("\n")

print("multi head attention:")

x = torch.randn(4,3,1024)

print(x)

print(x.size())

self_attention = Self_Attention_Muti_Head(1024,128,6,2)

res = self_attention(x)

print("\n")

print(res)

print(res.size())


有个问题:

根据文献:https://arxiv.org/pdf/1911.02150.pdf,感觉这里说的Multi Head Attenion和 Group Query Attention意思是一样的:

这下面这张经典的图中的的Grouped-query意思是一样的:

哪里没理解到位?

相关推荐
Crossoads2 小时前
【汇编语言】端口 —— 「从端口到时间:一文了解CMOS RAM与汇编指令的交汇」
android·java·汇编·深度学习·网络协议·机器学习·汇编语言
cwj&xyp3 小时前
Python(二)str、list、tuple、dict、set
前端·python·算法
是十一月末3 小时前
Opencv实现图片的边界填充和阈值处理
人工智能·python·opencv·计算机视觉
凳子花❀3 小时前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
泰迪智能科技015 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
算法小白(真小白)6 小时前
低代码软件搭建自学第二天——构建拖拽功能
python·低代码·pyqt
唐小旭6 小时前
服务器建立-错误:pyenv环境建立后python版本不对
运维·服务器·python
007php0076 小时前
Go语言zero项目部署后启动失败问题分析与解决
java·服务器·网络·python·golang·php·ai编程
Chinese Red Guest6 小时前
python
开发语言·python·pygame