MendelianRandomization | 孟德尔随机化神包更新啦!~(一)(小试牛刀)

1写在前面

今天发现MendelianRandomization包更新v0.9了。😜

其实也算不上更新。🫠

跟大家一起分享一下这个包做MR的用法吧。🤩

还有一个包就是TwoSampleMR,大家有兴趣可以去学一下。😅

2用到的包

复制代码
rm(list = ls())
# install.packages("MendelianRandomization")
library(MendelianRandomization)
library(tidyverse)

3示例数据

这里需要说明一下哦,不是所有的参数都需要填的,这个需要根据你后面用到的方法。😘

比如说一些方法不需要指定bxse。😜

mr_ivw函数是将BXSE设置为零的情况下运行的。😀


示例一

betaX是来自每个SNP的暴露因素的回归分析的β系数,betaXse标准误。😘

betaY是每个SNP的结局时间的回归分析的β系数数,betaYse标准误。🥳

复制代码
MRInputObject <- mr_input(bx = ldlc,
                          bxse = ldlcse,
                          by = chdlodds,
                          byse = chdloddsse)
MRInputObject

示例二

如果SNP是存在存在相关性,这个时候可以通过corr = 加入哦。😯

复制代码
MRInputObject.cor <- mr_input(bx = calcium,
                              bxse = calciumse,
                              by = fastgluc,
                              byse = fastglucse,
                              corr = calc.rho)
MRInputObject.cor

这里的两个data是出自下面2个原文,大家可以去读一下,试试复现:👇

1️⃣ Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG; EPIC- InterAct Consortium. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015 Jul;30(7):543-52. doi: 10.1007/s10654-015-0011-zIF: 13.6 Q1 . Epub 2015 Mar 15. PMID: 25773750 IF: 13.6 Q1 B1; PMCID: PMC4516908 IF: 13.6 Q1 B1.

2️⃣ Waterworth DM, Ricketts SL, Song K, Chen L, Zhao JH, Ripatti S, Aulchenko YS, Zhang W, Yuan X, Lim N, Luan J, Ashford S, Wheeler E, Young EH, Hadley D, Thompson JR, Braund PS, Johnson T, Struchalin M, Surakka I, Luben R, Khaw KT, Rodwell SA, Loos RJ, Boekholdt SM, Inouye M, Deloukas P, Elliott P, Schlessinger D, Sanna S, Scuteri A, Jackson A, Mohlke KL, Tuomilehto J, Roberts R, Stewart A, Kesäniemi YA, Mahley RW, Grundy SM; Wellcome Trust Case Control Consortium; McArdle W, Cardon L, Waeber G, Vollenweider P, Chambers JC, Boehnke M, Abecasis GR, Salomaa V, Järvelin MR, Ruokonen A, Barroso I, Epstein SE, Hakonarson HH, Rader DJ, Reilly MP, Witteman JC, Hall AS, Samani NJ, Strachan DP, Barter P, van Duijn CM, Kooner JS, Peltonen L, Wareham NJ, McPherson R, Mooser V, Sandhu MS. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol. 2010 Nov;30(11):2264-76. doi: 10.1161/ATVBAHA.109.201020 IF: 8.7 Q1 B1. Epub 2010 Sep 23. PMID: 20864672 IF: 8.7 Q1 B1; PMCID: PMC3891568 IF: 8.7 Q1 B1.

4方法一 Inverse-variance weighted method

MR的因果推断中,我们常用四种方法,inverse-variance weighted method, median-based methodMR-Egger method,还有Maximum likelihood method。😘

我们注意逐一介绍下。🔽

复制代码
IVWObject <- mr_ivw(MRInputObject,
                    model = "default",
                    robust = FALSE,
                    penalized = FALSE,
                    correl = FALSE,
                    weights = "simple",
                    psi = 0,
                    distribution = "normal",
                    alpha = 0.05)

IVWObject <- mr_ivw(mr_input(bx = ldlc, 
                             bxse = ldlcse,
                             by = chdlodds, 
                             byse = chdloddsse)
                    )

IVWObject

复制代码
IVWObject.correl <- mr_ivw(MRInputObject.cor,
                          model = "default",
                          correl = TRUE,
                          distribution = "normal",
                          alpha = 0.05)
                          IVWObject.correl <- mr_ivw(mr_input(bx = calcium, bxse = calciumse,
                          by = fastgluc, byse = fastglucse, corr = calc.rho)
                          )
IVWObject.correl

5方法二 Median-based method

复制代码
WeightedMedianObject <- mr_median(MRInputObject,
                                  weighting = "weighted",
                                  distribution = "normal",
                                  alpha = 0.05,
                                  iterations = 10000,
                                  seed = 314159265)

WeightedMedianObject <- mr_median(mr_input(bx = ldlc, 
                                           bxse = ldlcse,
                                           by = chdlodds, 
                                           byse = chdloddsse))

WeightedMedianObject

复制代码
SimpleMedianObject <- mr_median(mr_input(bx = ldlc, 
                                         bxse = ldlcse,
                                         by = chdlodds, 
                                         byse = chdloddsse), 
                                weighting = "simple")

SimpleMedianObject

6方法三 MR-Egger method

复制代码
EggerObject <- mr_egger(MRInputObject,
                        robust = FALSE,
                        penalized = FALSE,
                        correl = FALSE,
                        distribution = "normal",
                        alpha = 0.05)

EggerObject <- mr_egger(mr_input(bx = ldlc, 
                                 bxse = ldlcse,
                                 by = chdlodds, 
                                 byse = chdloddsse)
                        )

EggerObject

复制代码
EggerObject.corr <- mr_egger(MRInputObject.cor,
                            correl = TRUE,
                            distribution = "normal",
                            alpha = 0.05)

EggerObject.corr <- mr_egger(mr_input(bx = calcium, 
                                      bxse = calciumse,
                                      by = fastgluc, 
                                      byse = fastglucse, 
                                      corr = calc.rho))

EggerObject.corr

7方法四 Maximum likelihood method

复制代码
MaxLikObject <- mr_maxlik(MRInputObject,
                          model = "default",
                          correl = FALSE,
                          psi = 0,
                          distribution = "normal",
                          alpha = 0.05)

MaxLikObject <- mr_maxlik(mr_input(bx = ldlc, bxse = ldlcse,by = chdlodds, byse = chdloddsse))

MaxLikObject

复制代码
MaxLikObject.corr <- mr_maxlik(mr_input(bx = calcium, bxse = calciumse,by = fastgluc, byse = fastglucse, corr = calc.rho))

MaxLikObject.corr

8简单可视化

这里就以IVW为例哦。🙃

复制代码
mr_plot(MRInputObject,
        error = T, 
        orientate = F, 
        line = "ivw", # "ivw", "egger"
        interactive = F,
        labels = T
        )

最后祝大家早日不卷!~


点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰
📍 往期精彩 ****📍 🤩 LASSO | 不来看看怎么美化你的LASSO结果吗!?
📍 🤣 chatPDF | 别再自己读文献了!让chatGPT来帮你读吧!~
📍 🤩 WGCNA | 值得你深入学习的生信分析方法!~
📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......




****

本文由mdnice多平台发布

相关推荐
一只叫煤球的猫5 小时前
写代码很6,面试秒变菜鸟?不卖课,面试官视角走心探讨
前端·后端·面试
bobz9655 小时前
tcp/ip 中的多路复用
后端
bobz9655 小时前
tls ingress 简单记录
后端
你的人类朋友6 小时前
什么是OpenSSL
后端·安全·程序员
bobz9657 小时前
mcp 直接操作浏览器
后端
前端小张同学9 小时前
服务器部署 gitlab 占用空间太大怎么办,优化思路。
后端
databook9 小时前
Manim实现闪光轨迹特效
后端·python·动效
武子康10 小时前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
该用户已不存在10 小时前
6个值得收藏的.NET ORM 框架
前端·后端·.net
文心快码BaiduComate10 小时前
文心快码入选2025服贸会“数智影响力”先锋案例
前端·后端·程序员