分类模型评估方法

1.数据集划分

1.1 为什么要划分数据集?[¶](#1.1 为什么要划分数据集?¶)

思考:我们有以下场景:

  • 将所有的数据都作为训练数据,训练出一个模型直接上线预测

  • 每当得到一个新的数据,则计算新数据到训练数据的距离,预测得到新数据的类别

存在问题:

  • 上线之前,如何评估模型的好坏?

  • 模型使用所有数据训练,使用哪些数据来进行模型评估?

结论:不能将所有数据集全部用于训练

为了能够评估模型的泛化能力,可以通过实验测试对学习器的泛化能力进行评估,进而做出选择。因此需要使用一个 "测试集" 来测试学习器对新样本的判别能力,以测试集上的 "测试误差" 作为泛化误差的近似。

一般测试集满足:

  1. 能代表整个数据集
  2. 测试集与训练集互斥
  3. 测试集与训练集建议比例: 2比8、3比7 等

1.2 数据集划分的方法[¶](#1.2 数据集划分的方法¶)

留出法:将数据集划分成两个互斥的集合:训练集,测试集

  • 训练集用于模型训练
  • 测试集用于模型验证
  • 也称之为简单交叉验证

交叉验证:将数据集划分为训练集,验证集,测试集

  • 训练集用于模型训练
  • 验证集用于参数调整
  • 测试集用于模型验证

留一法:每次从训练数据中抽取一条数据作为测试集

自助法:以自助采样(可重复采样、有放回采样)为基础

  • 在数据集D中随机抽取m个样本作为训练集
  • 没被随机抽取到的D-m条数据作为测试集

1.3 留出法(简单交叉验证)

留出法 (hold-out) 将数据集 D 划分为两个互斥的集合,其中一个集合作为训练集 S,另一个作为测试集 T。

python 复制代码
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import ShuffleSplit
from collections import Counter
from sklearn.datasets import load_iris


def test01():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))

    # 2. 留出法(随机分割)
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
    print('随机类别分割:', Counter(y_train), Counter(y_test))

    # 3. 留出法(分层分割)
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y)
    print('分层类别分割:', Counter(y_train), Counter(y_test))


def test02():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    # 2. 多次划分(随机分割)
    spliter = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for train, test in spliter.split(x, y):
        print('随机多次分割:', Counter(y[test]))

    print('*' * 40)

    # 3. 多次划分(分层分割)
    spliter = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for train, test in spliter.split(x, y):
        print('分层多次分割:', Counter(y[test]))


if __name__ == '__main__':
    test01()
    test02()

1.4 交叉验证法

K-Fold交叉验证,将数据随机且均匀地分成k分,如上图所示(k为10),假设每份数据的标号为0-9

  • 第一次使用标号为0-8的共9份数据来做训练,而使用标号为9的这一份数据来进行测试,得到一个准确率
  • 第二次使用标记为1-9的共9份数据进行训练,而使用标号为0的这份数据进行测试,得到第二个准确率
  • 以此类推,每次使用9份数据作为训练,而使用剩下的一份数据进行测试
  • 共进行10次训练,最后模型的准确率为10次准确率的平均值
  • 这样可以避免了数据划分而造成的评估不准确的问题。
python 复制代码
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from collections import Counter
from sklearn.datasets import load_iris

def test():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    # 2. 随机交叉验证
    spliter = KFold(n_splits=5, shuffle=True, random_state=0)
    for train, test in spliter.split(x, y):
        print('随机交叉验证:', Counter(y[test]))

    print('*' * 40)

    # 3. 分层交叉验证
    spliter = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
    for train, test in spliter.split(x, y):
        print('分层交叉验证:', Counter(y[test]))


if __name__ == '__main__':
    test()

1.5 留一法

留一法( Leave-One-Out,简称LOO),即每次抽取一个样本做为测试集。

python 复制代码
from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import LeavePOut
from sklearn.datasets import load_iris
from collections import Counter


def test01():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    # 2. 留一法
    spliter = LeaveOneOut()
    for train, test in spliter.split(x, y):
        print('训练集:', len(train), '测试集:', len(test), test)

    print('*' * 40)

    # 3. 留P法
    spliter = LeavePOut(p=3)
    for train, test in spliter.split(x, y):
        print('训练集:', len(train), '测试集:', len(test), test)


if __name__ == '__main__':
    test01()

1.6 自助法

每次随机从D中抽出一个样本,将其拷贝放入D,然后再将该样本放回初始数据集D中,使得该样本在下次采样时仍有可能被抽到; 这个过程重复执行m次后,我们就得到了包含m个样本的数据集D′,这就是自助采样的结果。

import pandas as pd


if __name__ == '__main__':

    # 1. 构造数据集
    data = [[90, 2, 10, 40],
            [60, 4, 15, 45],
            [75, 3, 13, 46],
            [78, 2, 64, 22]]

    data = pd.DataFrame(data)
    print('数据集:\n',data)
    print('*' * 30)

    # 2. 产生训练集
    train = data.sample(frac=1, replace=True)
    print('训练集:\n', train)

    print('*' * 30)

    # 3. 产生测试集
    test = data.loc[data.index.difference(train.index)]
    print('测试集:\n', test)

2.分类算法的评估标准

2.1 分类算法的评估 [¶](#2.1 分类算法的评估¶)

如何评估分类算法?

  • 利用训练好的模型使用测试集的特征值进行预测

  • 将预测结果和测试集的目标值比较,计算预测正确的百分比

  • 这个百分比就是准确率 accuracy, 准确率越高说明模型效果越好

    from sklearn import datasets
    from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsClassifier
    #加载鸢尾花数据
    X,y = datasets.load_iris(return_X_y = True)
    #训练集 测试集划分
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)

    创建KNN分类器对象 近邻数为6

    knn_clf = KNeighborsClassifier(n_neighbors=6)
    #训练集训练模型
    knn_clf.fit(X_train,y_train)
    #使用训练好的模型进行预测
    y_predict = knn_clf.predict(X_test)

计算准确率:

sum(y_predict==y_test)/y_test.shape[0]

2.2 SKlearn中模型评估API介绍

sklearn封装了计算准确率的相关API:

  • sklearn.metrics包中的accuracy_score方法: 传入预测结果和测试集的标签, 返回预测准去率

  • 分类模型对象的 score 方法:传入测试集特征值,测试集目标值

    #计算准确率
    from sklearn.metrics import accuracy_score
    #方式1:
    accuracy_score(y_test,y_predict)
    #方式2:
    knn_classifier.score(X_test,y_test)

3. 小结[¶](#3. 小结¶)

  1. 留出法每次从数据集中选择一部分作为测试集、一部分作为训练集
  2. 交叉验证法将数据集等份为 N 份,其中一部分做验证集,其他做训练集
  3. 留一法每次选择一个样本做验证集,其他数据集做训练集
  4. 自助法通过有放回的抽样产生训练集、验证集
  5. 通过accuracy_score方法 或者分类模型对象的score方法可以计算分类模型的预测准确率用于模型评估
相关推荐
qq_5290252912 分钟前
Torch.gather
python·深度学习·机器学习
IT古董1 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比1 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
m0_748232921 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
海棠AI实验室1 小时前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
机器懒得学习1 小时前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
QQ同步助手2 小时前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
AIGC大时代2 小时前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc