RM3100 stm32驱动(硬件i2c)

目录

RM3100接线

原理图

SA0 SA1接地,此时i2c设备地址为0100000,即0x20

如果SA0接高,SA1接地,地址为0100001,即0x21

如果SA0接地,SA1接高,地址为0100010,即0x22

SDA SCL正常接单片机,要上拉

I2C/SPI接高,选择I2C模式

手册下载链接

HAL库I2C函数

stm32 hal库对于i2c的操作有几个函数:

HAL_I2C_Mem_Read

hi2c:i2cx,比如 &hi2c1

DevAddress:左移一位的传感器设备地址,比如RM3100原来是0x20,要输入(0x20<<1)即0x40

MemAddress:要读取的寄存器地址,这个不用左移,按照手册里面即可,比如HSHAKE寄存器就是0x35

MemAddSize:一般I2C_MEMADD_SIZE_8BIT

后面几个正常写即可,pData传指针把读出来数据传递出来,比如HSHAKE寄存器(0x35)读出来就是0x1B

c 复制代码
/**
  * @brief  Read an amount of data in blocking mode from a specific memory address
  * @param  hi2c Pointer to a I2C_HandleTypeDef structure that contains
  *                the configuration information for the specified I2C.
  * @param  DevAddress Target device address: The device 7 bits address value
  *         in datasheet must be shifted to the left before calling the interface
  * @param  MemAddress Internal memory address
  * @param  MemAddSize Size of internal memory address
  * @param  pData Pointer to data buffer
  * @param  Size Amount of data to be sent
  * @param  Timeout Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)

HAL_I2C_Mem_Write

和上面类似,不同的是pData 变成了往里面写的数据

c 复制代码
/**
  * @brief  Write an amount of data in blocking mode to a specific memory address
  * @param  hi2c Pointer to a I2C_HandleTypeDef structure that contains
  *                the configuration information for the specified I2C.
  * @param  DevAddress Target device address: The device 7 bits address value
  *         in datasheet must be shifted to the left before calling the interface
  * @param  MemAddress Internal memory address
  * @param  MemAddSize Size of internal memory address
  * @param  pData Pointer to data buffer
  * @param  Size Amount of data to be sent
  * @param  Timeout Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)

HAL_I2C_Master_Transmit / HAL_I2C_Master_Receive

这俩成对用,可以看到他俩都么有MemAddress

先调用HAL_I2C_Master_Transmit,pData写成MemAddress地址,再调用HAL_I2C_Master_Receive收数据

c 复制代码
/**
  * @brief  Transmits in master mode an amount of data in blocking mode.
  * @param  hi2c Pointer to a I2C_HandleTypeDef structure that contains
  *                the configuration information for the specified I2C.
  * @param  DevAddress Target device address: The device 7 bits address value
  *         in datasheet must be shifted to the left before calling the interface
  * @param  pData Pointer to data buffer
  * @param  Size Amount of data to be sent
  * @param  Timeout Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout)
c 复制代码
/**
  * @brief  Receives in master mode an amount of data in blocking mode.
  * @param  hi2c Pointer to a I2C_HandleTypeDef structure that contains
  *                the configuration information for the specified I2C.
  * @param  DevAddress Target device address: The device 7 bits address value
  *         in datasheet must be shifted to the left before calling the interface
  * @param  pData Pointer to data buffer
  * @param  Size Amount of data to be sent
  * @param  Timeout Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout)

例子 HSHAKE寄存器

两种写法,data即为读出来数据,应该是0x1B

c 复制代码
uint8_t data=0;
HAL_StatusTypeDef status = HAL_I2C_Mem_Read(&RM3100_I2C,RM3100_ADDRESS,ADDR_HSHAKE,I2C_MEMADD_SIZE_8BIT,&data, 1, 1000);
c 复制代码
uint8_t data=0;
uint8_t addr_hshake=ADDR_HSHAKE;//0x35
HAL_StatusTypeDef status = HAL_I2C_Master_Transmit(&RM3100_I2C,RM3100_ADDRESS,&addr_hshake,1,1000); //addr_hshake要写成目标寄存器地址
status = HAL_I2C_Master_Receive(&RM3100_I2C,(RM3100_ADDRESS|1),&data,1,1000);

cubemx配置

正常使用I2C即可,选择fast mode,最高400k可以工作

需要上拉,最好硬件上也拉一下

RM3100寄存器

上面提示了对于I2C,读写地址不一样,因为有一位0/1标志着读/写,但是不用管,hal库帮我们搞好了,直接对着第二列填MemAddress即可

驱动

采用poll写法,参考手册5.3 5.8 5.8.2

.h文件

c 复制代码
#ifndef __RM3100_H
#define __RM3100_H
#include "main.h"
#include "i2c.h"



#define RM3100_I2C hi2c1
#define RM3100_ADDRESS 0x20<<1 //AD0 AD1都接地

#define RM3100_CONVERSION_INTERVAL	10000	// Microseconds, corresponds to 100 Hz (cycle count 200 on 3 axis)
#define UTESLA_TO_GAUSS			100.0f
#define RM3100_SENSITIVITY		75.0f

#define ADDR_POLL		0x00
#define ADDR_CMM		0x01
#define ADDR_CCX		0x04
#define ADDR_CCY		0x06
#define ADDR_CCZ		0x08
#define ADDR_TMRC		0x0B
#define ADDR_MX			0x24
#define ADDR_MY			0x27
#define ADDR_MZ			0x2A
#define ADDR_BIST		0x33
#define ADDR_STATUS		0x34
//#define ADDR_STATUS_READ		0xB4 //0X34|0X80
#define ADDR_HSHAKE		0x35
#define ADDR_REVID		0x36

#define CCX_DEFAULT_MSB		0x00
#define CCX_DEFAULT_LSB		0xC8
#define CCY_DEFAULT_MSB		CCX_DEFAULT_MSB
#define CCY_DEFAULT_LSB		CCX_DEFAULT_LSB
#define CCZ_DEFAULT_MSB		CCX_DEFAULT_MSB
#define CCZ_DEFAULT_LSB		CCX_DEFAULT_LSB
#define CMM_DEFAULT		0x70	// No continuous mode
#define CONTINUOUS_MODE		(1 << 0)
#define POLLING_MODE		(0 << 0)
#define TMRC_DEFAULT		0x94
#define BIST_SELFTEST		0x8F
#define BIST_DEFAULT		0x00
#define BIST_XYZ_OK		((1 << 4) | (1 << 5) | (1 << 6))
#define STATUS_DRDY		(1 << 7)
#define POLL_XYZ		0x70
#define RM3100_REVID		0x22

#define NUM_BUS_OPTIONS		(sizeof(bus_options)/sizeof(bus_options[0]))


uint8_t RM3100ReadID(void);
uint8_t RM3100_Init(void);
uint8_t RM3100_GetData(short *x,short *y,short*z);
uint8_t RM3100_CheckDataReady(void);
#endif

.c文件

c 复制代码
#include "RM3100.h"

uint8_t RM3100ReadID(void){
	uint8_t data=0;
	uint8_t addr_hshake=ADDR_HSHAKE;
//	HAL_StatusTypeDef status = HAL_I2C_Mem_Read(&RM3100_I2C,RM3100_ADDRESS,ADDR_HSHAKE,I2C_MEMADD_SIZE_8BIT,&data, 1, 1000);
	
	HAL_StatusTypeDef status = HAL_I2C_Master_Transmit(&RM3100_I2C,RM3100_ADDRESS,&addr_hshake,1,1000); //addr_hshake要写成目标寄存器地址
	status = HAL_I2C_Master_Receive(&RM3100_I2C,(RM3100_ADDRESS|1),&data,1,1000);
	
	//两种写法都可以,读取0x35寄存器值,并与1b进行比较
	if(status!=HAL_OK){
		printf("RM3100 I2C Error!\r\n");
		return 1;
	}
	else{
		if(data!=0x1B){
			printf("RM3100 detected Error! %x\r\n",data);
			return 1;
		}
		else{
			printf("RM3100 Address = %x\r\n",data);
			return 0;
		}
	}
}

uint8_t RM3100_Init(void){
	uint8_t CCR[6] = {0, 200, 0, 200, 0, 200};
	if(RM3100ReadID()) {return 1;}
	else{
		HAL_StatusTypeDef status = HAL_I2C_Mem_Write(&RM3100_I2C,RM3100_ADDRESS,ADDR_CCX,I2C_MEMADD_SIZE_8BIT,CCR, 6, 1000);
		
		//发送一次poll请求,开始测量
		uint8_t data=POLL_XYZ;
		HAL_StatusTypeDef status1 = HAL_I2C_Mem_Write(&RM3100_I2C,RM3100_ADDRESS,ADDR_POLL,I2C_MEMADD_SIZE_8BIT,&data, 1, 1000);
		
		if(status!=HAL_OK | status1!=HAL_OK){
			printf("Error!,status=%d,status1=%d\r\n",status,status1);
			return 1;
		}
		else{
			return 0;
		}		
	}
}

uint8_t RM3100_CheckDataReady(void)
{
	uint8_t cResult;
	HAL_I2C_Mem_Read(&RM3100_I2C,RM3100_ADDRESS,ADDR_STATUS,I2C_MEMADD_SIZE_8BIT,&cResult,1,1000);
	cResult = cResult&0x80;
//	printf("%x\r\n",cResult);
	return cResult; 
}

uint8_t RM3100_GetData(short *x,short *y,short*z){
	static long Mag_Data[3] = {0};
	uint8_t temp[9]={0};
	uint8_t poll_request=POLL_XYZ;
	if(RM3100_CheckDataReady()==0x80){//data ready
		
		//读取9个字节
		HAL_StatusTypeDef status = HAL_I2C_Mem_Read(&RM3100_I2C,RM3100_ADDRESS,ADDR_MX,I2C_MEMADD_SIZE_8BIT,temp, 9, 1000);
		Mag_Data[0]= (long)temp[0]<<16 | (long)temp[1]<<8 | temp[2];
		
		if(Mag_Data[0] >= 0x00800000) {Mag_Data[0] |= 0xff000000;}
		Mag_Data[1] = (long)temp[3]<<16 | (long)temp[4]<<8 | temp[5];
		
		if(Mag_Data[1] >= 0x00800000) {Mag_Data[1] |= 0xff000000;}
		Mag_Data[2] = (long)temp[6]<<16 | (long)temp[7]<<8 | temp[8];
		
		if(Mag_Data[2] >= 0x00800000) {Mag_Data[2] |= 0xff000000;}
		
		*y = -Mag_Data[0];
		*x = -Mag_Data[1];
		*z = -Mag_Data[2];
		
		//发送一次poll请求,开始测量
		HAL_StatusTypeDef status1 = HAL_I2C_Mem_Write(&RM3100_I2C,RM3100_ADDRESS,ADDR_POLL,I2C_MEMADD_SIZE_8BIT,&poll_request, 1, 1000);
		if(status!=HAL_OK | status1!=HAL_OK){
			printf("Error!,status=%d,status1=%d\r\n",status,status1);
			return 1;
		}
		else{
			return 0;
		}
	}
	else{
		printf("Data Not Ready!\r\n");
		return 1;
	}
}

主函数:

c 复制代码
int main(void)
{
  //初始化......
  RM3100_Init();
  short hx,hy,hz=0;
  while (1)
  {
		RM3100_GetData(&hx, &hy, &hz);
		printf("RM3100 hx: %d, hy: %d, hz: %d\r\n", hx, hy, hz);
		HAL_Delay(8);
  }
}

其他功能没写,后面慢慢补上

最终效果


相关推荐
wenchm1 小时前
细说STM32F407单片机轮询方式读写SPI FLASH W25Q16BV
stm32·单片机·嵌入式硬件
委员1 小时前
基于NodeMCU的物联网电灯控制系统设计
单片机·物联网·嵌入式·nodemcu··lu_asr01·gy-302
北国无红豆1 小时前
【CAN总线】STM32的CAN外设
c语言·stm32·嵌入式硬件
单片机学习之路1 小时前
【C语言】结构
c语言·开发语言·stm32·单片机·51单片机
m0_748254093 小时前
STM32--超声波模块(HC—SR04)(标准库+HAL库)
stm32·单片机·嵌入式硬件
南城花随雪。3 小时前
单片机:实现FFT快速傅里叶变换算法(附带源码)
单片机·嵌入式硬件·算法
逝灮3 小时前
【蓝桥杯——物联网设计与开发】基础模块8 - RTC
stm32·单片机·嵌入式硬件·mcu·物联网·蓝桥杯·rtc
LXL_244 小时前
模拟——郑益慧_笔记1_绪论
嵌入式硬件
weixin_452600699 小时前
串行时钟保持芯片D1380/D1381,低功耗工作方式自带秒、分、时、日、日期、月、年的串行时钟保持芯片,每个月多少天以及闰年能自动调节
科技·单片机·嵌入式硬件·时钟·白色家电电源·微机串行时钟
森旺电子13 小时前
51单片机仿真摇号抽奖机源程序 12864液晶显示
单片机·嵌入式硬件·51单片机