【大数据面试知识点】Spark中的累加器

Spark累加器

累加器用来把Executor端变量信息聚合到Driver端,在driver程序中定义的变量,在Executor端的每个task都会得到这个变量的一份新的副本,每个task更新这些副本的值后,传回driver端进行merge。

累加器一般是放在行动算子中进行操作的。

Spark累加器有哪些特点?

1)累加器在全局唯一的,只增不减,记录全局集群的唯一状态

2)在Executor中修改它,在Driver读取

3)executor级别共享的,广播变量是task级别的共享两个application不可以共享累加器,但是同一个app不同的job可以共享

应用举例

不经过Shuffle实现词频统计

Scala 复制代码
object Spark06_Accumulator {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getName).setMaster("local[*]")
    val sc = new SparkContext(conf)
    val rdd: RDD[(String, Int)] = sc.makeRDD(List(("a", 1), ("b", 2), ("a", 3), ("b", 4)))
    // 声明累加器
    val sumAcc: LongAccumulator = sc.longAccumulator("sumAcc")
    rdd.foreach {
      case (word, count) => {
        // 使用累加器
        sumAcc.add(count)
      }
    }
    // 累加器的toString方法
    //println(sumAcc)
    //取出累加器中的值
    println(sumAcc.value)
    sc.stop()
  }
}

不经过shuffle,计算以H开头的单词出现的次数。

Scala 复制代码
object Spark07_MyAccumulator {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getName).setMaster("local[*]")
    val sc = new SparkContext(conf)
    val rdd: RDD[String] = sc.makeRDD(List("Hello", "HaHa", "spark", "scala", "Hi", "Hello", "Hi"))
    // 创建累加器
    val myAcc = new MyAccumulator
    //注册累加器
    sc.register(myAcc, "MyAcc")
    rdd.foreach{
      datas => {
        // 使用累加器
        myAcc.add(datas)
      }
    }
    // 获取累加器的结果
    println(myAcc.value)

    sc.stop()
  }
}

// 自定义累加器
// 泛型分别为输入类型和输出类型
class MyAccumulator extends AccumulatorV2[String, mutable.Map[String, Int]] {
  // 定义输出数据变量
  var map: mutable.Map[String, Int] = mutable.Map[String, Int]()

  // 累加器是否为初始状态
  override def isZero: Boolean = map.isEmpty

  // 复制累加器
  override def copy(): AccumulatorV2[String, mutable.Map[String, Int]] = {
    val MyAcc = new MyAccumulator
    // 将此累加器中的数据赋值给新创建的累加器
    MyAcc.map = this.map
    MyAcc
  }

  // 重置累加器
  override def reset(): Unit = {
    map.clear()
  }

  // 累加器添加元素
  override def add(v: String): Unit = {
    if (v.startsWith("H")) {
      // 判断map集合中是否已经存在此元素
      map(v) = map.getOrElse(v, 0) + 1
    }
  }

  // 合并累加器中的元素
  override def merge(other: AccumulatorV2[String, mutable.Map[String, Int]]): Unit = {
    val map1: mutable.Map[String, Int] = this.map
    val map2: mutable.Map[String, Int] = other.value
    // 合并两个map
    map = map1.foldLeft(map2) {
      (m, kv) => {
        m(kv._1) = m.getOrElse(kv._1, 0) + kv._2
        m
      }
    }
  }

  // 获取累加器中的值
  override def value: mutable.Map[String, Int] = {
    map
  }
}

参考:Spark累加器的作用和使用-CSDN博客

相关推荐
大数据追光猿9 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
人类群星闪耀时10 小时前
物联网与大数据:揭秘万物互联的新纪元
大数据·物联网·struts
快手技术11 小时前
Blaze RangePartitioning 算子Native实现全解析
spark·naive
Nicole Potter12 小时前
请说明C#中的List是如何扩容的?
开发语言·面试·c#
拉不动的猪15 小时前
刷刷题16
前端·javascript·面试
支撑前端荣耀15 小时前
基于 Vue 的响应式瀑布流实现全景解析
前端·javascript·面试
哑巴语天雨15 小时前
前端面试-网络协议篇
websocket·网络协议·http·面试·https
01_16 小时前
力扣hot100——LRU缓存(面试高频考题)
leetcode·缓存·面试·lru
桃林春风一杯酒16 小时前
HADOOP_HOME and hadoop.home.dir are unset.
大数据·hadoop·分布式
桃木山人17 小时前
BigData File Viewer报错
大数据·java-ee·github·bigdata