【大数据面试知识点】Spark中的累加器

Spark累加器

累加器用来把Executor端变量信息聚合到Driver端,在driver程序中定义的变量,在Executor端的每个task都会得到这个变量的一份新的副本,每个task更新这些副本的值后,传回driver端进行merge。

累加器一般是放在行动算子中进行操作的。

Spark累加器有哪些特点?

1)累加器在全局唯一的,只增不减,记录全局集群的唯一状态

2)在Executor中修改它,在Driver读取

3)executor级别共享的,广播变量是task级别的共享两个application不可以共享累加器,但是同一个app不同的job可以共享

应用举例

不经过Shuffle实现词频统计

Scala 复制代码
object Spark06_Accumulator {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getName).setMaster("local[*]")
    val sc = new SparkContext(conf)
    val rdd: RDD[(String, Int)] = sc.makeRDD(List(("a", 1), ("b", 2), ("a", 3), ("b", 4)))
    // 声明累加器
    val sumAcc: LongAccumulator = sc.longAccumulator("sumAcc")
    rdd.foreach {
      case (word, count) => {
        // 使用累加器
        sumAcc.add(count)
      }
    }
    // 累加器的toString方法
    //println(sumAcc)
    //取出累加器中的值
    println(sumAcc.value)
    sc.stop()
  }
}

不经过shuffle,计算以H开头的单词出现的次数。

Scala 复制代码
object Spark07_MyAccumulator {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getName).setMaster("local[*]")
    val sc = new SparkContext(conf)
    val rdd: RDD[String] = sc.makeRDD(List("Hello", "HaHa", "spark", "scala", "Hi", "Hello", "Hi"))
    // 创建累加器
    val myAcc = new MyAccumulator
    //注册累加器
    sc.register(myAcc, "MyAcc")
    rdd.foreach{
      datas => {
        // 使用累加器
        myAcc.add(datas)
      }
    }
    // 获取累加器的结果
    println(myAcc.value)

    sc.stop()
  }
}

// 自定义累加器
// 泛型分别为输入类型和输出类型
class MyAccumulator extends AccumulatorV2[String, mutable.Map[String, Int]] {
  // 定义输出数据变量
  var map: mutable.Map[String, Int] = mutable.Map[String, Int]()

  // 累加器是否为初始状态
  override def isZero: Boolean = map.isEmpty

  // 复制累加器
  override def copy(): AccumulatorV2[String, mutable.Map[String, Int]] = {
    val MyAcc = new MyAccumulator
    // 将此累加器中的数据赋值给新创建的累加器
    MyAcc.map = this.map
    MyAcc
  }

  // 重置累加器
  override def reset(): Unit = {
    map.clear()
  }

  // 累加器添加元素
  override def add(v: String): Unit = {
    if (v.startsWith("H")) {
      // 判断map集合中是否已经存在此元素
      map(v) = map.getOrElse(v, 0) + 1
    }
  }

  // 合并累加器中的元素
  override def merge(other: AccumulatorV2[String, mutable.Map[String, Int]]): Unit = {
    val map1: mutable.Map[String, Int] = this.map
    val map2: mutable.Map[String, Int] = other.value
    // 合并两个map
    map = map1.foldLeft(map2) {
      (m, kv) => {
        m(kv._1) = m.getOrElse(kv._1, 0) + kv._2
        m
      }
    }
  }

  // 获取累加器中的值
  override def value: mutable.Map[String, Int] = {
    map
  }
}

参考:Spark累加器的作用和使用-CSDN博客

相关推荐
乌恩大侠1 小时前
AI-RAN 在 Spark上部署 Sionna-RK
大数据·分布式·spark
芯片智造3 小时前
光刻工艺工程师职场就业相关面试问题汇总
经验分享·面试·芯片·半导体
G皮T3 小时前
【ELasticsearch】索引字段设置 “index”: false 的作用
大数据·elasticsearch·搜索引擎·全文检索·索引·index·检索
程序员皮皮林6 小时前
Redis:大数据中如何抗住2000W的QPS
大数据·数据库·redis
武子康7 小时前
大数据-169 Elasticsearch 入门到可用:索引/文档 CRUD 与搜索最小示例
大数据·后端·elasticsearch
v***91307 小时前
PostgreSQL 中进行数据导入和导出
大数据·数据库·postgresql
阿杰真不会敲代码8 小时前
Filter与Interceptor深度解析:分清这两个“拦截器”,面试不再掉坑
java·spring boot·面试
千里念行客2409 小时前
国产射频芯片“小巨人”昂瑞微今日招股 拟于12月5日进行申购
大数据·前端·人工智能·科技
一水鉴天9 小时前
整体设计 定稿 之15 chat分类的专题讨论(codebuddy)
大数据·分类·数据挖掘
WYiQIU15 小时前
11月面了7.8家前端岗,兄弟们12月我先躺为敬...
前端·vue.js·react.js·面试·前端框架·飞书