【大数据面试知识点】Spark中的累加器

Spark累加器

累加器用来把Executor端变量信息聚合到Driver端,在driver程序中定义的变量,在Executor端的每个task都会得到这个变量的一份新的副本,每个task更新这些副本的值后,传回driver端进行merge。

累加器一般是放在行动算子中进行操作的。

Spark累加器有哪些特点?

1)累加器在全局唯一的,只增不减,记录全局集群的唯一状态

2)在Executor中修改它,在Driver读取

3)executor级别共享的,广播变量是task级别的共享两个application不可以共享累加器,但是同一个app不同的job可以共享

应用举例

不经过Shuffle实现词频统计

Scala 复制代码
object Spark06_Accumulator {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getName).setMaster("local[*]")
    val sc = new SparkContext(conf)
    val rdd: RDD[(String, Int)] = sc.makeRDD(List(("a", 1), ("b", 2), ("a", 3), ("b", 4)))
    // 声明累加器
    val sumAcc: LongAccumulator = sc.longAccumulator("sumAcc")
    rdd.foreach {
      case (word, count) => {
        // 使用累加器
        sumAcc.add(count)
      }
    }
    // 累加器的toString方法
    //println(sumAcc)
    //取出累加器中的值
    println(sumAcc.value)
    sc.stop()
  }
}

不经过shuffle,计算以H开头的单词出现的次数。

Scala 复制代码
object Spark07_MyAccumulator {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getName).setMaster("local[*]")
    val sc = new SparkContext(conf)
    val rdd: RDD[String] = sc.makeRDD(List("Hello", "HaHa", "spark", "scala", "Hi", "Hello", "Hi"))
    // 创建累加器
    val myAcc = new MyAccumulator
    //注册累加器
    sc.register(myAcc, "MyAcc")
    rdd.foreach{
      datas => {
        // 使用累加器
        myAcc.add(datas)
      }
    }
    // 获取累加器的结果
    println(myAcc.value)

    sc.stop()
  }
}

// 自定义累加器
// 泛型分别为输入类型和输出类型
class MyAccumulator extends AccumulatorV2[String, mutable.Map[String, Int]] {
  // 定义输出数据变量
  var map: mutable.Map[String, Int] = mutable.Map[String, Int]()

  // 累加器是否为初始状态
  override def isZero: Boolean = map.isEmpty

  // 复制累加器
  override def copy(): AccumulatorV2[String, mutable.Map[String, Int]] = {
    val MyAcc = new MyAccumulator
    // 将此累加器中的数据赋值给新创建的累加器
    MyAcc.map = this.map
    MyAcc
  }

  // 重置累加器
  override def reset(): Unit = {
    map.clear()
  }

  // 累加器添加元素
  override def add(v: String): Unit = {
    if (v.startsWith("H")) {
      // 判断map集合中是否已经存在此元素
      map(v) = map.getOrElse(v, 0) + 1
    }
  }

  // 合并累加器中的元素
  override def merge(other: AccumulatorV2[String, mutable.Map[String, Int]]): Unit = {
    val map1: mutable.Map[String, Int] = this.map
    val map2: mutable.Map[String, Int] = other.value
    // 合并两个map
    map = map1.foldLeft(map2) {
      (m, kv) => {
        m(kv._1) = m.getOrElse(kv._1, 0) + kv._2
        m
      }
    }
  }

  // 获取累加器中的值
  override def value: mutable.Map[String, Int] = {
    map
  }
}

参考:Spark累加器的作用和使用-CSDN博客

相关推荐
Costrict6 分钟前
解锁新阵地!CoStrict 现已支持 JetBrains 系列 IDE
大数据·ide·人工智能·深度学习·自然语言处理·ai编程·visual studio
阿里云大数据AI技术35 分钟前
云栖实录|阿里云 Milvus:AI 时代的专业级向量数据库
大数据·人工智能·搜索引擎
爱吃KFC的大肥羊42 分钟前
第二次面试:C++qt开发实习生
面试·职场和发展
GL-Yang42 分钟前
2025年-集合类面试题
java·面试
随心............1 小时前
在开发过程中遇到问题如何解决,以及两个经典问题
hive·hadoop·spark
黄昏恋慕黎明1 小时前
JVM虚拟机(面试重)
jvm·面试·职场和发展
-睡到自然醒~1 小时前
[go 面试] 并发与数据一致性:事务的保障
数据库·面试·golang
vivo互联网技术1 小时前
vivo HDFS EC 大规模落地实践
大数据·hdfs
Dolphin_海豚1 小时前
@vue/reactivity
前端·vue.js·面试
怪兽20142 小时前
请谈谈什么是同步屏障?
android·面试