python SVM 保存和加载模型参数

在 Python 中,你可以使用 scikit-learn 库中的 joblib 或 pickle 模块来保存和加载 SVM 模型的参数。以下是一个简单的示例代码,演示了如何使用 joblib 模块保存和加载 SVM 模型的参数:

保存模型参数:

python 复制代码
from sklearn import svm
from sklearn import datasets
import joblib

# 载入数据集
iris = datasets.load_iris()
X, y = iris.data, iris.target

# 创建 SVM 模型
model = svm.SVC()
model.fit(X, y)

# 保存模型参数
joblib.dump(model, 'svm_model.pkl')

加载模型参数

python 复制代码
# 加载模型参数
loaded_model = joblib.load('svm_model.pkl')

# 使用加载的模型进行预测
result = loaded_model.predict([X[0]])
print(result)

在这个示例中,我们首先使用 scikit-learn 载入了鸢尾花数据集,并创建了一个 SVM 模型。然后,我们使用 joblib.dump 函数将模型参数保存到名为 svm_model.pkl 的文件中。接着,我们使用 joblib.load 函数加载保存的模型参数,并使用加载的模型进行预测。

你也可以使用 pickle 模块来保存和加载模型参数,示例如下:

保存模型参数:

python 复制代码
import pickle

# 保存模型参数
with open('svm_model.pkl', 'wb') as f:
    pickle.dump(model, f)

加载模型参数:

python 复制代码
# 加载模型参数
with open('svm_model.pkl', 'rb') as f:
    loaded_model = pickle.load(f)

# 使用加载的模型进行预测
result = loaded_model.predict([X[0]])
print(result)

这段代码使用了 pickle.dump 函数将模型参数保存到名为 svm_model.pkl 的文件中,然后使用 pickle.load 函数加载保存的模型参数,并使用加载的模型进行预测。

相关推荐
杜子不疼.7 小时前
CANN应用开发完整流程
个人开发
WHD3061 天前
苏州误删除 格式化 服务器文件 恢复
随机森林·支持向量机·深度优先·爬山算法·宽度优先·推荐算法·最小二乘法
爱吃rabbit的mq1 天前
第10章:支持向量机:找到最佳边界
算法·机器学习·支持向量机
t198751282 天前
基于MATLAB的HOG+GLCM特征提取与SVM分类实现
支持向量机·matlab·分类
XX風2 天前
4.1 spectral clusterig
人工智能·机器学习·支持向量机
加密狗复制模拟2 天前
破解加密狗时间限制介绍
安全·软件工程·个人开发
Ivanqhz2 天前
向量化计算
开发语言·c++·后端·算法·支持向量机·rust
Next_Tech_AI3 天前
别用 JS 惯坏了鸿蒙
开发语言·前端·javascript·个人开发·ai编程·harmonyos
(; ̄ェ ̄)。3 天前
机器学习入门(二十)支持向量机SVM
人工智能·机器学习·支持向量机
机器学习之心3 天前
BiLSTM-BP-SVR加权组合模型回归预测四模型对比,对比BiLSTM、BP神经网络、SVR支持向量机回归,MATLAB代码
神经网络·支持向量机·回归·bilstm-bp-svr