分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机多特征分类预测

分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机多特征分类预测

目录

分类效果



基本描述

1.Matlab实现DBO-SVM蜣螂算法优化支持向量机多特征分类预测(完整源码和数据) 优化支持向量机核函数参数c和g。

2.多特征输入单输出的二分类及多分类模型。运行环境matlab2018。

3.语言为matlab,含分类效果图,迭代优化图,混淆矩阵图。

4.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2018及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

clike 复制代码
%%  参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数dim为2 。
% 定义优化参数的上下限,如c的范围是[0.01, 1], g的范围是[2^-5, 2^5],那么参数的下限lb=[0.01, 2^-5];参数的上限ub=[1, 2^5]。
%目标函数
fun = @getObjValue; 
% 优化参数的个数 (c、g)
dim = 2;
% 优化参数的取值下限
lb = [10^-1, 1];
ub = [10^2, 2^8];

%%  参数设置
pop =6; %种群数量
maxgen=100;%最大迭代次数
%% 优化(这里主要调用函数)
c = Best_pos(1, 1);  
g = Best_pos(1, 2); 
toc
% 用优化得到c,g训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(T_train, P_train, cmd);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
feifeigo12314 小时前
SVM分类在高光谱遥感图像分类与预测中的应用
算法·支持向量机·分类
玦尘、2 天前
《统计学习方法》第7章——支持向量机SVM(下)【学习笔记】
机器学习·支持向量机·学习方法
fengfuyao9854 天前
基于MATLAB的支持向量机在故障诊断中的应用例程
开发语言·支持向量机·matlab
hoiii1875 天前
MATLAB实现HOG特征提取与SVM行人检测
开发语言·支持向量机·matlab
玦尘、5 天前
《统计学习方法》第7章——支持向量机SVM(上)【学习笔记】
学习·支持向量机·学习方法
fie88895 天前
基于BP神经网络和支持向量机实现风机故障诊断
人工智能·神经网络·支持向量机
qq19226385 天前
【ABS防抱死 汽车动力学 Simulink仿真模型】 可控制切换各种路面情况(干、湿、雪)和...
支持向量机
我不是QI7 天前
周志华《机器学习—西瓜书》五
人工智能·机器学习·支持向量机
民乐团扒谱机7 天前
【微实验】OPTICS算法:让密度不均的数据“各归其类”
人工智能·算法·机器学习·支持向量机·matlab·聚类·optics
LO嘉嘉VE7 天前
学习笔记二十八:核方法
笔记·学习·支持向量机