算法28:力扣64题,最小路径和------------样本模型

题目:

给定一个二维数组matrix,一个人必须从左上角出发,最后到达右下角 。沿途只可以向下或者向右走,沿途的数字都累加就是距离累加和 * 返回累加和最小值

思路:

1. 既然是给定二维数组matrix,那么二维数组的数据是知道的

2. 这个人只能从左上角出发,目的地是右下角

3. 沿途只能向下或者向右走。那么第一行和第一列的值是可以知道的。

假设这个二维数组是:

|---|---|---|---|
| 3 | 7 | 9 | 6 |
| 6 | 5 | 3 | 9 |
| 8 | 3 | 1 | 5 |
| 4 | 7 | 9 | 2 |

根据这个二维数组推导:

第一行的数据只能往右走,因为它不存在上方数据,依此可以推导出:

|---|----|----|----|
| 3 | 10 | 19 | 25 |
| | | | |
| | | | |
| | | | |

第一列的数据,只能往下走,因为它不存在左边的数据,以此可以推导

|----------|---------|----------|----------|
| 3 | 10(3+7) | 19(10+9) | 25(19+6) |
| 9(3+6) | | | |
| 17(9+8) | | | |
| 21(17+4) | | | |

已经推导出第一行和第一列的数据,接下来开始推导剩下的数据。因为每一个格子的数据都是依赖上一行的当前列或者当前行的前一列的值。谁小,就要谁。以此可以推导出:

|----|--------------------|--------------------|--------------------|
| 3 | 10 | 19 | 25 |
| 9 | 14(9<10取 9+5) | 17(14<19 取14+3) | 26(17<25 取17+9) |
| 17 | 17(14<17 取14+3) | 18 | 23(18<26 取 18+5) |
| 21 | 24 (17<21 取 17+7) | 27 (18<24 取 18+9) | 25 (23<27 取 23+2) |

推导公式已经出来了。下面看代码的实现:

java 复制代码
public static int minSum (int[][] matrix)
    {
        if (matrix == null || matrix.length == 0) {
            return 0;
        }
        //行数
        int row = matrix.length;
        //列数
        int col = matrix[0].length;

        //如果是100*100规模的二维数组。那么dp的空间开销巨大
        int[][] dp = new int[row][col];

        //dp的第一行值只能依赖左边的值
        dp[0][0] = matrix[0][0];
        //构建dp表的第一行数据
        for (int colIndex = 1; colIndex < col; colIndex++) {
            //前一列和当前列的累加和,放入dp表
            dp[0][colIndex] = dp[0][colIndex -1] + matrix[0][colIndex];
        }

        //构建dp表的第一列数据
        for (int rowIndex = 1; rowIndex < row; rowIndex++) {
            //上一列和当前列的累加和,放入dp表
            dp[rowIndex][0] = dp[rowIndex -1][0] + matrix[rowIndex][0];
        }

        for (int rowIndex = 1; rowIndex < row; rowIndex++) {

            for (int colIndex = 1; colIndex < col; colIndex++) {
                //先获取上一行当前列 与 当前行的前一列 较小的值
                //获取matrix数组的当前行当前列的值
                //两者相加,就是 dp[rowIndex][colIndex]能够得到的最小值
                dp[rowIndex][colIndex] = Math.min(dp[rowIndex][colIndex -1], dp[rowIndex -1][colIndex]) + matrix[rowIndex][colIndex];
            }
        }
        return dp[row-1][col-1];
    }

以上代码是逐步推导的过程。但是,如果一个100行100列的数组需要推导,而且是要右下角的数据,中间数据是没有必要一直存在的。以上的代码浪费了 100*100的空间,并不是一个好的方式:

分析:

1. 第一行的数据是一定要的,因为根据第一行数据可以推导出第二行的数据

2. 第一列的数据是没有必要一次性全部推导出来的,因为每一个格子只依赖上一行的当前列和当前行的前一列。如果移动到当前行,直接更新当前行的第一列即可。

优化的代码:

java 复制代码
//空间压缩进行优化
    public static int minSum2 (int[][] matrix)
    {
        if (matrix == null || matrix.length == 0) {
            return 0;
        }
        //行数
        int row = matrix.length;
        //列数
        int col = matrix[0].length;

        // 空间压缩。
        // 二维数组变一维数组。
        int[] dp = new int[col];
        //构建dp表的第一行数据
        dp[0] = matrix[0][0];
        for (int colIndex = 1; colIndex < col; colIndex++) {
            //前一列和当前列的累加和,放入dp表
            dp[colIndex] = dp[colIndex -1] + matrix[0][colIndex];
        }

        for (int rowIndex = 1; rowIndex < row; rowIndex++) {
            //当前行第一列数据
            dp[0] += matrix[rowIndex][0];

            for (int colIndex = 1; colIndex < col; colIndex++) {
                 dp[colIndex] = Math.min(dp[colIndex -1], dp[colIndex]) + matrix[rowIndex][colIndex];
            }
        }

        return dp[col -1];
    }

完整代码以及测试结果:

java 复制代码
package code03.动态规划_07.lesson4;

/**
 * 给定一个二维数组matrix,一个人必须从左上角出发,最后到达右下角
 * 沿途只可以向下或者向右走,沿途的数字都累加就是距离累加和
 * 返回累加和最小值
 */
public class MinPathSum_01 {

    public static int minSum (int[][] matrix)
    {
        if (matrix == null || matrix.length == 0) {
            return 0;
        }
        //行数
        int row = matrix.length;
        //列数
        int col = matrix[0].length;

        //如果是100*100规模的二维数组。那么dp的空间开销巨大
        int[][] dp = new int[row][col];

        //dp的第一行值只能依赖左边的值
        dp[0][0] = matrix[0][0];
        //构建dp表的第一行数据
        for (int colIndex = 1; colIndex < col; colIndex++) {
            //前一列和当前列的累加和,放入dp表
            dp[0][colIndex] = dp[0][colIndex -1] + matrix[0][colIndex];
        }

        //构建dp表的第一列数据
        for (int rowIndex = 1; rowIndex < row; rowIndex++) {
            //上一列和当前列的累加和,放入dp表
            dp[rowIndex][0] = dp[rowIndex -1][0] + matrix[rowIndex][0];
        }

        for (int rowIndex = 1; rowIndex < row; rowIndex++) {

            for (int colIndex = 1; colIndex < col; colIndex++) {
                //先获取上一行当前列 与 当前行的前一列 较小的值
                //获取matrix数组的当前行当前列的值
                //两者相加,就是 dp[rowIndex][colIndex]能够得到的最小值
                dp[rowIndex][colIndex] = Math.min(dp[rowIndex][colIndex -1], dp[rowIndex -1][colIndex]) + matrix[rowIndex][colIndex];
            }
        }
        return dp[row-1][col-1];
    }

    //空间压缩进行优化
    public static int minSum2 (int[][] matrix)
    {
        if (matrix == null || matrix.length == 0) {
            return 0;
        }
        //行数
        int row = matrix.length;
        //列数
        int col = matrix[0].length;

        // 空间压缩。
        // 二维数组变一维数组。
        int[] dp = new int[col];
        //构建dp表的第一行数据
        dp[0] = matrix[0][0];
        for (int colIndex = 1; colIndex < col; colIndex++) {
            //前一列和当前列的累加和,放入dp表
            dp[colIndex] = dp[colIndex -1] + matrix[0][colIndex];
        }

        for (int rowIndex = 1; rowIndex < row; rowIndex++) {
            //当前行第一列数据
            dp[0] += matrix[rowIndex][0];

            for (int colIndex = 1; colIndex < col; colIndex++) {
                 dp[colIndex] = Math.min(dp[colIndex -1], dp[colIndex]) + matrix[rowIndex][colIndex];
            }
        }

        return dp[col -1];
    }

    public static void main(String[] args) {
        int[][] arr = {
                {3,7,9,6},
                {6,5,3,9},
                {8,3,1,5},
                {4,7,9,2}
        };

        System.out.println(minSum(arr));
        System.out.println(minSum2(arr));
    }

}
相关推荐
竹杖芒鞋轻胜马,夏天喜欢吃西瓜2 分钟前
哈希算法解析
算法·哈希算法
执笔论英雄10 分钟前
【RL】 ROLL中负载均衡
运维·算法·负载均衡
星辞树14 分钟前
从计数到预测:深入浅出词向量 (Word Vectors) —— Stanford CS224n 作业实战记录
算法
JarryStudy15 分钟前
自动调优在Triton-on-Ascend中的应用:从参数优化到性能极致挖掘
人工智能·算法·昇腾·cann·ascend c
CoderYanger19 分钟前
递归、搜索与回溯-穷举vs暴搜vs深搜vs回溯vs剪枝:13.子集
java·算法·leetcode·机器学习·剪枝·1024程序员节
黑客思维者23 分钟前
底层冗余性原理探秘模型剪枝(Pruning)为何能“无损”压缩模型?
算法·机器学习·剪枝
疯疯癫癫才自由32 分钟前
爬取Leetcode Hot 100 题单
算法·leetcode
WolfGang00732135 分钟前
代码随想录算法训练营Day33 | 322.零钱兑换、279.完全平方数、139.单词拆分、背包总结
算法
CoderYanger39 分钟前
递归、搜索与回溯-综合练习:28.不同路径Ⅲ
java·算法·leetcode·深度优先·1024程序员节
我发在否41 分钟前
Rust > 牛客OJ在线编程常见输入输出练习场
算法·rust