使用pytorch进行图像预处理的常用方法的详细解释

一般来说,我们在使用pytorch进行图像分类任务时都会对训练集数据做必要的格式转换和增广处理,对测试集做格式处理。

以下是常用的数据集处理函数:

python 复制代码
data_transform = {  
        "train": transforms.Compose([transforms.RandomResizedCrop(224),                                     
                                     transforms.RandomHorizontalFlip(),                                   
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
        "val": transforms.Compose([transforms.Resize((224, 224)),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

1. 对于transforms.RandomResizedCrop(224):

这个函数可以实现对输入的图像进行随机裁剪和缩放,以生成一个具有固定大小(224x224)的随机裁剪图像。具体操作步骤如: 首先,从原始图像中随机选择一个区域进行裁剪;然后,将裁剪得到的区域缩放到指定的大小(224x224),保持长宽比不变;最后,返回缩放后的图像作为输出。

2.transforms.RandomHorizontalFlip():

这个函数可以按照一定的概率(默认为0.5)对输入的图像进行随机水平翻转。具体步骤如下: 随机生成一个0到1之间的随机数,如果生成的随机数小于等于给定的概率,则对图像进行水平翻转,否则保持图像不变。

3. transforms.ToTensor():

这是一种数据预处理操作,常用于将PIL图像或NumPy数组转换为张量(Tensor)的格式。 具体而言,该操作将输入的图像或数组转换为PyTorch张量,将像素值从0到255的整数范围映射到0到1之间的浮点数范围。如果输入是多通道的图像,则每个通道都会被独立地转换为张量。 另外需要注意的是,transforms.ToTensor() 的使用通常发生在其他数据预处理操作之后,例如裁剪、缩放等。这样可以确保在转换为张量之前先对数据进行必要的处理。

4.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]):

这个函数用于对图像进行标准化处理。具体而言,该操作将输入的图像的每个通道进行标准化处理,使其均值为0,标准差为1。这种标准化可以使模型更容易学习到有效的特征,提高模型的收敛速度和稳定性。这里给定的参数(0.5, 0.5, 0.5)表示每个通道的均值,(0.5, 0.5, 0.5)表示每个通道的标准差。在进行标准化时,会先减去均值,再除以标准差。需要注意的是,这里给定的均值和标准差是针对RGB图像的,如果输入是其他类型的图像或者通道数不同,需要相应地调整参数。

相关推荐
陈鋆17 分钟前
智慧城市初探与解决方案
人工智能·智慧城市
qdprobot18 分钟前
ESP32桌面天气摆件加文心一言AI大模型对话Mixly图形化编程STEAM创客教育
网络·人工智能·百度·文心一言·arduino
QQ395753323718 分钟前
金融量化交易模型的突破与前景分析
人工智能·金融
QQ395753323719 分钟前
金融量化交易:技术突破与模型优化
人工智能·金融
The_Ticker31 分钟前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
Elastic 中国社区官方博客37 分钟前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
jwolf238 分钟前
摸一下elasticsearch8的AI能力:语义搜索/vector向量搜索案例
人工智能·搜索引擎
有Li1 小时前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉
傻啦嘿哟1 小时前
如何使用 Python 开发一个简单的文本数据转换为 Excel 工具
开发语言·python·excel
B站计算机毕业设计超人1 小时前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化