使用Tensorboard可视化网络结构(基于pytorch)

前言

我们在搭建网络模型的时候,通常希望可以对自己搭建好的网络模型有一个比较好的直观感受,从而更好地了解网络模型的结构,Tensorboard工具的使用就给我们提供了方便的途径

Tensorboard概况

Tensorboard是由Google公司开源的一款可视化工具,是TensorFlow的一个附属组件,但在pytorch项目中也可以使用。

它有以下主要功能:

  • 可视化网络模型:您可以直观地了解模型的结构,包括层的堆栈方式,激活函数等。
  • 记录和绘制训练过程中各项指标的变化,例如loss曲线、准确率曲线等。
  • 可视化特征空间和高维度数据。
  • 可视化梯度、权重乃至激活函数输出分布等等。

这篇博客主要介绍Tensorboard可视化网络模型的功能

代码实现

我们搭建一个简单的神经网络,依赖的库环境

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.tensorboard import SummaryWriter

搭建网络模型

python 复制代码
class Net(nn.Module):
    def __init__(self,input_dim,layer1_dim,layer2_dim,output_dim):  
        super(Net,self).__init__()
        self.flatten = nn.Flatten() 
        self.layer1 = nn.Sequential(nn.Linear(input_dim,layer1_dim),nn.ReLU())
        self.layer2 = nn.Sequential(nn.Linear(layer1_dim,layer2_dim),nn.ReLU())
        self.out = nn.Sequential(nn.Linear(layer2_dim,output_dim),nn.Softmax(dim=-1))

    def forward(self,x):
        x = self.flatten(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.out(x)
        return x

# 初始化网络中的值
input_dim,layer1_dim,layer2_dim,output_dim=32*32,512,128,10
model = Net(input_dim,layer1_dim,layer2_dim,output_dim)

网络由三层全连接层组成,输入的数据形状为

python 复制代码
# 定义输入模型的数据,1表示批次,这里可以忽略
input_data = torch.rand(1,32,32)

# 模型输出的数据
output_data = model(input_data)

接下俩就是使用SummaryWriter创建日志保存搭建好的网络模型

python 复制代码
with SummaryWriter(log_dir=r"D:\CSDN_point\12_22\logs", comment="Net") as w:
    w.add_graph(model, input_data)

log_dir参数就是日志文件的本地保存路径,comment就是日志的备注,add_graph()传入网络模型和输入数据,运行后就会在指定路径上生成对应的文件,打开log文件所在的文件位置,在顶部路径上输入cmd,打开命令行窗口

在命令行窗口输入

python 复制代码
tensorboard --logdir logs

复制返回的网址在浏览器打开,就可以得到对应的网络可视化结果了

欢迎大家讨论交流~


相关推荐
一晌小贪欢1 小时前
【Python数据分析】数据分析与可视化
开发语言·python·数据分析·数据可视化·数据清洗
数据皮皮侠1 小时前
区县政府税务数据分析能力建设DID(2007-2025)
大数据·数据库·人工智能·信息可视化·微信开放平台
极小狐2 小时前
比 Cursor 更丝滑的 AI DevOps 编程智能体 - CodeRider-Kilo 正式发布!
运维·人工智能·devops
半臻(火白)3 小时前
Prompt-R1:重新定义AI交互的「精准沟通」范式
人工智能
菠菠萝宝3 小时前
【AI应用探索】-10- Cursor实战:小程序&APP - 下
人工智能·小程序·kotlin·notepad++·ai编程·cursor
dreams_dream3 小时前
Flask
后端·python·flask
连线Insight3 小时前
架构调整后,蚂蚁继续死磕医疗健康“硬骨头”
人工智能
小和尚同志3 小时前
十月份 AI Coding 实践!Qoder、CC、Codex 还是 iflow?
人工智能·aigc
mywpython4 小时前
用Python和Websockets库构建一个高性能、低延迟的实时消息推送服务
python·websocket
keke.shengfengpolang4 小时前
中专旅游管理专业职业发展指南:从入门到精通的成长路径
人工智能·旅游