使用Tensorboard可视化网络结构(基于pytorch)

前言

我们在搭建网络模型的时候,通常希望可以对自己搭建好的网络模型有一个比较好的直观感受,从而更好地了解网络模型的结构,Tensorboard工具的使用就给我们提供了方便的途径

Tensorboard概况

Tensorboard是由Google公司开源的一款可视化工具,是TensorFlow的一个附属组件,但在pytorch项目中也可以使用。

它有以下主要功能:

  • 可视化网络模型:您可以直观地了解模型的结构,包括层的堆栈方式,激活函数等。
  • 记录和绘制训练过程中各项指标的变化,例如loss曲线、准确率曲线等。
  • 可视化特征空间和高维度数据。
  • 可视化梯度、权重乃至激活函数输出分布等等。

这篇博客主要介绍Tensorboard可视化网络模型的功能

代码实现

我们搭建一个简单的神经网络,依赖的库环境

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.tensorboard import SummaryWriter

搭建网络模型

python 复制代码
class Net(nn.Module):
    def __init__(self,input_dim,layer1_dim,layer2_dim,output_dim):  
        super(Net,self).__init__()
        self.flatten = nn.Flatten() 
        self.layer1 = nn.Sequential(nn.Linear(input_dim,layer1_dim),nn.ReLU())
        self.layer2 = nn.Sequential(nn.Linear(layer1_dim,layer2_dim),nn.ReLU())
        self.out = nn.Sequential(nn.Linear(layer2_dim,output_dim),nn.Softmax(dim=-1))

    def forward(self,x):
        x = self.flatten(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.out(x)
        return x

# 初始化网络中的值
input_dim,layer1_dim,layer2_dim,output_dim=32*32,512,128,10
model = Net(input_dim,layer1_dim,layer2_dim,output_dim)

网络由三层全连接层组成,输入的数据形状为

python 复制代码
# 定义输入模型的数据,1表示批次,这里可以忽略
input_data = torch.rand(1,32,32)

# 模型输出的数据
output_data = model(input_data)

接下俩就是使用SummaryWriter创建日志保存搭建好的网络模型

python 复制代码
with SummaryWriter(log_dir=r"D:\CSDN_point\12_22\logs", comment="Net") as w:
    w.add_graph(model, input_data)

log_dir参数就是日志文件的本地保存路径,comment就是日志的备注,add_graph()传入网络模型和输入数据,运行后就会在指定路径上生成对应的文件,打开log文件所在的文件位置,在顶部路径上输入cmd,打开命令行窗口

在命令行窗口输入

python 复制代码
tensorboard --logdir logs

复制返回的网址在浏览器打开,就可以得到对应的网络可视化结果了

欢迎大家讨论交流~


相关推荐
dreadp42 分钟前
解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩
图像处理·python·opencv·计算机视觉·数据分析
梦云澜1 小时前
论文阅读(十二):全基因组关联研究中生物通路的图形建模
论文阅读·人工智能·深度学习
Tester_孙大壮1 小时前
第32章 测试驱动开发(TDD)的原理、实践、关联与争议(Python 版)
驱动开发·python·tdd
远洋录1 小时前
构建一个数据分析Agent:提升分析效率的实践
人工智能·ai·ai agent
IT古董2 小时前
【深度学习】常见模型-Transformer模型
人工智能·深度学习·transformer
沐雪架构师3 小时前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
python算法(魔法师版)4 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
小王子10244 小时前
设计模式Python版 组合模式
python·设计模式·组合模式
kakaZhui4 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20255 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习