词嵌入位置编码的实现(基于pytorch)

背景介绍

在transformers架构当中,对于词向量的输入需要加上原本词对应的位置信息,作为输入到模型中训练的input,那具体的位置编码如何实现呢?本篇博客就跟大家一起分享一下对应的步骤

位置编码的公式

对于词向量的位置编码的方式有多种,这里就介绍用三角函数进行位置编码的公式

PE是position embeding位置编码的意思,pos表示词的位置,表示词向量的维度,i表示词向量的第i维度

那接下来我们就根据公式进行位置编码的代码实现

代码实现

环境依赖的库

python 复制代码
import torch
import math
import numpy as np
import matplotlib.pyplot as plt

定义一个函数获取位置编码的信息

python 复制代码
def generate_word_embeding(max_len,d_model):
    # 初始化位置信息
    pos = torch.arange(max_len).unsqueeze(1)
    
    # 初始化位置编码矩阵
    result = torch.zeros(max_len,d_model)

    # 获得公式对应的值
    coding = torch.exp(torch.arange(0,d_model,2)*(-math.log(10000.0))/d_model)
    result[:,0::2] = torch.sin(pos*coding)
    result[:,1::2] = torch.cos(pos*coding)

    # 为了与原编码直接相加,格式为[B,seq_len,d_model],需要再增加一个维度
    return result.unsqueeze(0)

假设我们的max_len是100,d_model为20,那么pos的维度为[100,1],result的维度为[100,20],coding的维度为[1,d_model/2],result[:,0::2]是指对result的每列从第0列开始每隔一列赋值,对应公式中的PE(pos,2i);同理,result[:,1::2]对应公式中的PE(pos,2i+1)

位置编码信息可视化

我们把得位置编码信息进行可视化从而得到更直观的感受

python 复制代码
d = 6
pos_code = generate_word_embeding(100,d)
print(pos_code.shape)
plt.plot(np.arange(100),pos_code[0,:,0:d])
plt.legend(['dim=%d'%p for p in range(d)])
plt.show()

把词的时序长度设置为6,显示对应时序上每一个维度的位置编码信息

可以看到每一个时序位置上对应每一个维度都对应一个三角函数的变换规律,在放进model中训练的后就能够通过学习获得位置对应的知识

欢迎大家讨论交流~


相关推荐
Warren2Lynch6 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale7 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant7 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138347 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
多米Domi0117 小时前
0x3f第33天复习 (16;45-18:00)
数据结构·python·算法·leetcode·链表
soldierluo7 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms17 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑7 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei7 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
freepopo7 小时前
天津商业空间设计:材质肌理里的温度与质感[特殊字符]
python·材质