词嵌入位置编码的实现(基于pytorch)

背景介绍

在transformers架构当中,对于词向量的输入需要加上原本词对应的位置信息,作为输入到模型中训练的input,那具体的位置编码如何实现呢?本篇博客就跟大家一起分享一下对应的步骤

位置编码的公式

对于词向量的位置编码的方式有多种,这里就介绍用三角函数进行位置编码的公式

PE是position embeding位置编码的意思,pos表示词的位置,表示词向量的维度,i表示词向量的第i维度

那接下来我们就根据公式进行位置编码的代码实现

代码实现

环境依赖的库

python 复制代码
import torch
import math
import numpy as np
import matplotlib.pyplot as plt

定义一个函数获取位置编码的信息

python 复制代码
def generate_word_embeding(max_len,d_model):
    # 初始化位置信息
    pos = torch.arange(max_len).unsqueeze(1)
    
    # 初始化位置编码矩阵
    result = torch.zeros(max_len,d_model)

    # 获得公式对应的值
    coding = torch.exp(torch.arange(0,d_model,2)*(-math.log(10000.0))/d_model)
    result[:,0::2] = torch.sin(pos*coding)
    result[:,1::2] = torch.cos(pos*coding)

    # 为了与原编码直接相加,格式为[B,seq_len,d_model],需要再增加一个维度
    return result.unsqueeze(0)

假设我们的max_len是100,d_model为20,那么pos的维度为[100,1],result的维度为[100,20],coding的维度为[1,d_model/2],result[:,0::2]是指对result的每列从第0列开始每隔一列赋值,对应公式中的PE(pos,2i);同理,result[:,1::2]对应公式中的PE(pos,2i+1)

位置编码信息可视化

我们把得位置编码信息进行可视化从而得到更直观的感受

python 复制代码
d = 6
pos_code = generate_word_embeding(100,d)
print(pos_code.shape)
plt.plot(np.arange(100),pos_code[0,:,0:d])
plt.legend(['dim=%d'%p for p in range(d)])
plt.show()

把词的时序长度设置为6,显示对应时序上每一个维度的位置编码信息

可以看到每一个时序位置上对应每一个维度都对应一个三角函数的变换规律,在放进model中训练的后就能够通过学习获得位置对应的知识

欢迎大家讨论交流~


相关推荐
SweetCode5 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
程序员Linc18 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
CryptoPP18 分钟前
springboot 对接马来西亚数据源API等多个国家的数据源
spring boot·后端·python·金融·区块链
xcLeigh26 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
大乔乔布斯26 分钟前
AttributeError: module ‘smtplib‘ has no attribute ‘SMTP_SSL‘ 解决方法
python·bash·ssl
果冻人工智能29 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_7978820938 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
明灯L39 分钟前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
果冻人工智能39 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
databook40 分钟前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn