数据结构与算法之美学习笔记:44 | 最短路径:地图软件是如何计算出最优出行路径的?

目录

前言

本节课程思维导图:

我们学习了图的两种搜索算法,深度优先搜索和广度优先搜索。这两种算法主要是针对无权图的搜索算法。针对有权图,也就是图中的每条边都有一个权重,我们该如何计算两点之间的最短路径(经过的边的权重和最小)呢?今天,我就从地图软件的路线规划问题讲起,带你看看常用的最短路径算法(Shortest Path Algorithm)。

像 Google 地图、百度地图、高德地图这样的地图软件,我想你应该经常使用吧?如果想从家开车到公司,你只需要输入起始、结束地址,地图就会给你规划一条最优出行路线。这里的最优,有很多种定义,比如最短路线、最少用时路线、最少红绿灯路线等等。作为一名软件开发工程师,你是否思考过,地图软件的最优路线是如何计算出来的吗?底层依赖了什么算法呢?

算法解析

我们刚提到的最优问题包含三个:最短路线、最少用时和最少红绿灯。我们先解决最简单的,最短路线。

实际开发过程中,最重要的一点就是建模,也就是将复杂的场景抽象成具体的数据结构。针对这个问题,我们该如何抽象成数据结构呢?

显然,把地图抽象成图最合适不过了。我们把每个岔路口看作一个顶点,岔路口与岔路口之间的路看作一条边,路的长度就是边的权重。如果路是单行道,我们就在两个顶点之间画一条有向边;如果路是双行道,我们就在两个顶点之间画两条方向不同的边。这样,整个地图就被抽象成一个有向有权图。

代码如下:

java 复制代码
public class Graph { // 有向有权图的邻接表表示
  private LinkedList<Edge> adj[]; // 邻接表
  private int v; // 顶点个数

  public Graph(int v) {
    this.v = v;
    this.adj = new LinkedList[v];
    for (int i = 0; i < v; ++i) {
      this.adj[i] = new LinkedList<>();
    }
  }

  public void addEdge(int s, int t, int w) { // 添加一条边
    this.adj[s].add(new Edge(s, t, w));
  }

  private class Edge {
    public int sid; // 边的起始顶点编号
    public int tid; // 边的终止顶点编号
    public int w; // 权重
    public Edge(int sid, int tid, int w) {
      this.sid = sid;
      this.tid = tid;
      this.w = w;
    }
  }
  // 下面这个类是为了dijkstra实现用的
  private class Vertex {
    public int id; // 顶点编号ID
    public int dist; // 从起始顶点到这个顶点的距离
    public Vertex(int id, int dist) {
      this.id = id;
      this.dist = dist;
    }
  }
}

想要解决这个问题,有一个非常经典的算法,最短路径算法,更加准确地说,是单源最短路径算法(一个顶点到一个顶点)。提到最短路径算法,最出名的莫过于 Dijkstra 算法了。所以,我们现在来看,Dijkstra 算法是怎么工作的。

具体代码如下:

java 复制代码
// 因为Java提供的优先级队列,没有暴露更新数据的接口,所以我们需要重新实现一个
private class PriorityQueue { // 根据vertex.dist构建小顶堆
  private Vertex[] nodes;
  private int count;
  public PriorityQueue(int v) {
    this.nodes = new Vertex[v+1];
    this.count = v;
  }
  public Vertex poll() { // TODO: 留给读者实现... }
  public void add(Vertex vertex) { // TODO: 留给读者实现...}
  // 更新结点的值,并且从下往上堆化,重新符合堆的定义。时间复杂度O(logn)。
  public void update(Vertex vertex) { // TODO: 留给读者实现...} 
  public boolean isEmpty() { // TODO: 留给读者实现...}
}

public void dijkstra(int s, int t) { // 从顶点s到顶点t的最短路径
  int[] predecessor = new int[this.v]; // 用来还原最短路径
  Vertex[] vertexes = new Vertex[this.v];
  for (int i = 0; i < this.v; ++i) {
    vertexes[i] = new Vertex(i, Integer.MAX_VALUE);
  }
  PriorityQueue queue = new PriorityQueue(this.v);// 小顶堆
  boolean[] inqueue = new boolean[this.v]; // 标记是否进入过队列
  vertexes[s].dist = 0;
  queue.add(vertexes[s]);
  inqueue[s] = true;
  while (!queue.isEmpty()) {
    Vertex minVertex= queue.poll(); // 取堆顶元素并删除
    if (minVertex.id == t) break; // 最短路径产生了
    for (int i = 0; i < adj[minVertex.id].size(); ++i) {
      Edge e = adj[minVertex.id].get(i); // 取出一条minVetex相连的边
      Vertex nextVertex = vertexes[e.tid]; // minVertex-->nextVertex
      if (minVertex.dist + e.w < nextVertex.dist) { // 更新next的dist
        nextVertex.dist = minVertex.dist + e.w;
        predecessor[nextVertex.id] = minVertex.id;
        if (inqueue[nextVertex.id] == true) {
          queue.update(nextVertex); // 更新队列中的dist值
        } else {
          queue.add(nextVertex);
          inqueue[nextVertex.id] = true;
        }
      }
    }
  }
  // 输出最短路径
  System.out.print(s);
  print(s, t, predecessor);
}

private void print(int s, int t, int[] predecessor) {
  if (s == t) return;
  print(s, predecessor[t], predecessor);
  System.out.print("->" + t);
}

我们用 vertexes 数组,记录从起始顶点到每个顶点的距离(dist)。起初,我们把所有顶点的 dist 都初始化为无穷大(也就是代码中的 Integer.MAX_VALUE)。我们把起始顶点的 dist 值初始化为 0,然后将其放到优先级队列中。

我们从优先级队列中取出 dist 最小的顶点 minVertex,然后考察这个顶点可达的所有顶点(代码中的 nextVertex)。如果 minVertex 的 dist 值加上 minVertex 与 nextVertex 之间边的权重 w 小于 nextVertex 当前的 dist 值,也就是说,存在另一条更短的路径,它经过 minVertex 到达 nextVertex。那我们就把 nextVertex 的 dist 更新为 minVertex 的 dist 值加上 w。然后,我们把 nextVertex 加入到优先级队列中。重复这个过程,直到找到终止顶点 t 或者队列为空。

以上就是 Dijkstra 算法的核心逻辑。除此之外,代码中还有两个额外的变量,predecessor 数组和 inqueue 数组。

predecessor 数组的作用是为了还原最短路径,它记录每个顶点的前驱顶点。最后,我们通过递归的方式,将这个路径打印出来。

inqueue 数组是为了避免将一个顶点多次添加到优先级队列中。我们更新了某个顶点的 dist 值之后,如果这个顶点已经在优先级队列中了,就不要再将它重复添加进去了。

理解了 Dijkstra 的原理和代码实现,我们来看下,Dijkstra 算法的时间复杂度是多少?

在刚刚的代码实现中,最复杂就是 while 循环嵌套 for 循环那部分代码了。while 循环最多会执行 V 次(V 表示顶点的个数),而内部的 for 循环的执行次数不确定,跟每个顶点的相邻边的个数有关,我们分别记作 E0,E1,E2,......,E(V-1)。如果我们把这 V 个顶点的边都加起来,最大也不会超过图中所有边的个数 E(E 表示边的个数)。

for 循环内部的代码涉及从优先级队列取数据、往优先级队列中添加数据、更新优先级队列中的数据,这样三个主要的操作。我们知道,优先级队列是用堆来实现的,堆中的这几个操作,时间复杂度都是 O(logV)(堆中的元素个数不会超过顶点的个数 V)。所以,综合这两部分,再利用乘法原则,整个代码的时间复杂度就是 O(E*logV)。

我们再来回答之前的问题,如何计算最优出行路线?

从理论上讲,用 Dijkstra 算法可以计算出两点之间的最短路径。但是,你有没有想过,对于一个超级大地图来说,岔路口、道路都非常多,对应到图这种数据结构上来说,就有非常多的顶点和边。如果为了计算两点之间的最短路径,在一个超级大图上动用 Dijkstra 算法,遍历所有的顶点和边,显然会非常耗时。那我们有没有什么优化的方法呢?

对于软件开发工程师来说,我们经常要根据问题的实际背景,对解决方案权衡取舍。类似出行路线这种工程上的问题,我们没有必要非得求出个绝对最优解。很多时候,为了兼顾执行效率,我们只需要计算出一个可行的次优解就可以了。

虽然地图很大,但是两点之间的最短路径或者说较好的出行路径,并不会很"发散",只会出现在两点之间和两点附近的区块内。所以我们可以在整个大地图上,划出一个小的区块,这个小区块恰好可以覆盖住两个点,但又不会很大。我们只需要在这个小区块内部运行 Dijkstra 算法,这样就可以避免遍历整个大图,也就大大提高了执行效率。

我们再来看另外两个问题,最少时间和最少红绿灯。

前面讲最短路径的时候,每条边的权重是路的长度。在计算最少时间的时候,算法还是不变,我们只需要把边的权重,从路的长度变成经过这段路所需要的时间。不过,这个时间会根据拥堵情况时刻变化。

每经过一条边,就要经过一个红绿灯。关于最少红绿灯的出行方案,实际上,我们只需要把每条边的权值改为 1 即可,算法还是不变,可以继续使用前面讲的 Dijkstra 算法。不过,边的权值为 1,也就相当于无权图了,我们还可以使用之前讲过的广度优先搜索算法。因为我们前面讲过,广度优先搜索算法计算出来的两点之间的路径,就是两点的最短路径。

总结引申

今天,我们学习了一种非常重要的图算法,Dijkstra 最短路径算法。实际上,最短路径算法还有很多,比如 Bellford 算法、Floyd 算法等等。

这些算法实现思路非常经典,掌握了这些思路,我们可以拿来指导、解决其他问题。比如 Dijkstra 这个算法的核心思想,就可以拿来解决下面这个看似完全不相关的问题。为了在较短的篇幅里把问题介绍清楚,我对背景做了一些简化。

我们有一个翻译系统,只能针对单个词来做翻译。如果要翻译一整个句子,我们需要将句子拆成一个一个的单词,再丢给翻译系统。针对每个单词,翻译系统会返回一组可选的翻译列表,并且针对每个翻译打一个分,表示这个翻译的可信程度。

针对每个单词,我们从可选列表中,选择其中一个翻译,组合起来就是整个句子的翻译。每个单词的翻译的得分之和,就是整个句子的翻译得分。随意搭配单词的翻译,会得到一个句子的不同翻译。针对整个句子,我们希望计算出得分最高的前 k 个翻译结果,你会怎么编程来实现呢?

实际上,这个问题可以借助 Dijkstra 算法的核心思想,非常高效地解决。每个单词的可选翻译是按照分数从大到小排列的,所以 a0​b0​c0​ 肯定是得分最高组合结果。我们把 a0​b0​c0​ 及得分作为一个对象,放入到优先级队列中。

我们每次从优先级队列中取出一个得分最高的组合,并基于这个组合进行扩展。扩展的策略是每个单词的翻译分别替换成下一个单词的翻译。比如 a0​b0​c0​ 扩展后,会得到三个组合,a1​b0​c0​、a0​b1​c0​、a0​b0​c1​。我们把扩展之后的组合,加到优先级队列中。重复这个过程,直到获取到 k 个翻译组合或者队列为空。

我们来看,这种实现思路的时间复杂度是多少?

假设句子包含 n 个单词,每个单词平均有 m 个可选的翻译,我们求得分最高的前 k 个组合结果。每次一个组合出队列,就对应着一个组合结果,我们希望得到 k 个,那就对应着 k 次出队操作。每次有一个组合出队列,就有 n 个组合入队列。优先级队列中出队和入队操作的时间复杂度都是 O(logX),X 表示队列中的组合个数。所以,总的时间复杂度就是 O(knlogX)。那 X 到底是多少呢?

k 次出入队列,队列中的总数据不会超过 kn,也就是说,出队、入队操作的时间复杂度是 O(log(k n))。所以,总的时间复杂度就是 O(knlog(k*n)),比之前的指数级时间复杂度降低了很多。

相关推荐
Bdygsl1 小时前
数据结构 —— 双向循环链表
数据结构·链表
程序员阿鹏1 小时前
怎么理解削峰填谷?
java·开发语言·数据结构·spring·zookeeper·rabbitmq·rab
夏幻灵1 小时前
为什么要配置环境变量?
笔记·算法
铭哥的编程日记2 小时前
Manacher算法解决所有回文串问题 (覆盖所有题型)
算法
LYFlied2 小时前
【每日算法】LeetCode 300. 最长递增子序列
前端·数据结构·算法·leetcode·职场和发展
ohnoooo92 小时前
251225 算法2 期末练习
算法·动态规划·图论
车队老哥记录生活2 小时前
强化学习 RL 基础 3:随机近似方法 | 梯度下降
人工智能·算法·机器学习·强化学习
闲看云起2 小时前
LeetCode-day2:字母异位词分组分析
算法·leetcode·职场和发展
NAGNIP2 小时前
Hugging Face 200页的大模型训练实录
人工智能·算法
Swift社区2 小时前
LeetCode 457 - 环形数组是否存在循环
算法·leetcode·职场和发展