卷积神经网络(CNN)、循环神经网络(RNN)和自注意力(self-attention)对比

考虑同一个的问题:将由个词元组成的序列映射到另一个长度相同的序列,其中的每个输入词元或输出词元由维向量表示。

我们将比较能够解决上述问题的三种常用方法:卷积神经网络(CNN)、循环神经网络(RNN)和自注意力(self-attention),从三个维度比较这三种架构:计算复杂度、顺序操作和最大路径长度。

其中,讨论顺序操作是因为顺序操作会妨碍并行计算。任意的序列位置组合之间的路径越短,越能更轻松地学习序列中的远距离依赖关系。

1、卷积神经网络(CNN)

考虑⼀个卷积核⼤⼩为的卷积层。(后续文章中将介绍关于使⽤卷积神经⽹络处理序列的详细信息)⽬前只需要知道的是,由于序列⻓度是,输⼊和输出的通道数量都是,所以卷积层的计算复杂度为。 如图所⽰,卷积神经⽹络是分层的,因此为有个顺序操作,最⼤路径⻓度为。例如,处于图中卷积核⼤⼩为3的双层卷积神经⽹络的感受野内。

2、循环神经网络(RNN)

当更新循环神经⽹络的隐状态时,权重矩阵和维隐状态的乘法计算复杂度为。由于序列⻓度为, 因此循环神经⽹络层的计算复杂度为。根据图,有个顺序操作⽆法并⾏化,最⼤路径⻓度 也是

3、自注意力(self-attention)

在⾃注意⼒中,查询、键和值都是矩阵。考虑缩放的"点-积"注意⼒,其中矩阵乘 以矩阵。之后输出的矩阵乘以矩阵。因此,⾃注意⼒具有计算复杂性。正如在图中所讲,每个词元都通过⾃注意⼒直接连接到任何其他词元。因此,有个顺序操作可以并⾏计算,最⼤路径⻓度也是

4、小结

总⽽⾔之,卷积神经⽹络和⾃注意⼒都拥有并⾏计算的优势,⽽且⾃注意⼒的最⼤路径⻓度最短,但是因为其计算复杂度是关于序列⻓度的⼆次⽅(⾃注意⼒具有计算复杂性),所以在很⻓的序列中计算会⾮常慢。

相关推荐
2301_818730561 小时前
transformer(上)
人工智能·深度学习·transformer
木枷1 小时前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习
陈天伟教授1 小时前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译
却道天凉_好个秋2 小时前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
Lun3866buzha2 小时前
【深度学习应用】鸡蛋裂纹检测与分类:基于YOLOv3的智能识别系统,从图像采集到缺陷分类的完整实现
深度学习·yolo·分类
大江东去浪淘尽千古风流人物3 小时前
【VLN】VLN仿真与训练三要素 Dataset,Simulators,Benchmarks(2)
深度学习·算法·机器人·概率论·slam
cyyt3 小时前
深度学习周报(2.2~2.8)
人工智能·深度学习
2401_836235864 小时前
财务报表识别产品:从“数据搬运”到“智能决策”的技术革命
人工智能·科技·深度学习·ocr·生活
holeer4 小时前
【V2.0】王万良《人工智能导论》笔记|《人工智能及其应用》课程教材笔记
神经网络·机器学习·ai·cnn·nlp·知识图谱·智能计算
啊森要自信4 小时前
CANN runtime 深度解析:异构计算架构下运行时组件的性能保障与功能增强实现逻辑
深度学习·架构·transformer·cann