数据结构与算法(flutter)之基础概念(一)

对于一个程序(或算法)性能的评估, 经常是从时间与空间两个维度来进行考虑。时间方面是指程序的运行时间, 称为"时间复杂度"。空间方面是程序在计算机内存所占的空间大小, 称为"空间复杂度"。

时间复杂度

我们可以就某个算法的执行步骤计数来衡量运行时间的标准,也是一科渐进表示法。一起来看一个例子,同样是两条指令:

css 复制代码
a= a+1与a=a+0.3/0.7*10005

由于涉及变量存储类型与表达式的复杂度,因此真正绝对精确的运行时间一定不相同。不过话又说回来,如此大费周章地精确计算程序的运行时间往往寸步难行,而且也亳无意义。因此用一种"估算"的方法来衡量程序或算法的运行时间反而更加怡当,这种估算的时间就是"时间复杂度"。详细定义如下:

在一个完全理想状态下的计算机中,我们定义 T(n)来表示程序执行所要花费的时间,其中n代表数据输入量。当然,程序的运行时间(Worse Case Executing Time)或最大运行时间是时间复杂度的衡量标准,一般以 Big-oh 表示。

分析算法的时间复杂度必须考虑它的成长比率 (Rate of Growth),往往是一种函数,时间复杂度也是一种"渐近表示法" (Asymptotic Notation)。

空间复杂度

所谓"空间复杂度",就是估算一个算法在运行过程中临时占用内存空间的大小,是一种渐进表示法。而这些所需要的内存空间通常可以分为 "固定空间内存"(包括基本程序代码、常数、变量等)与"变动空间内存"(随程序运行时而改变大小的使用空间,例如引用类型变量。由于计算机硬件发展日新月异以及计算机不同, 因此纯粹从程序(或算法)的性能角度来看, 应该以算法的运行时间为主要评估与分析的依据。

常见的Big-Oh

事实上,时间复杂度只是执行次数的一个概略的估算,并非真实的执行次数。Big-oh 是一种用来表示最坏运行时间的估算方式,也是最常用于描达时间复杂度的渐近式表示法。

Big-Oh 特色与说明
O(1) 称为常数时间 (constant time),表示算法的运行时间是一个常数倍数
O(n) 称为线性时间 (linear time),表示执行的时间会随着数据集合的大小而线性增长
O(log2n) 称为次线性时间 (sub-linear time),成长速度比线性时间慢,而比常数时间快
O(n2) 称为平方时间 (quadratic time),算法的运行时间会成二次方的增长
O(n3) 称为立方时间 (cubic time),算法的运行时间会成三次方的增长
O(2n) 称为指数时间 (exponential time),算法的运行时间会成2的口次方增长。例如解决非多项式问题 (Nonpolynomial Problem)算法的时间复杂度即为 O(2")
O(nlog2n) 称为线性乘对数时间,介于线性和二次方增长的中间模式
相关推荐
你撅嘴真丑12 小时前
第九章-数字三角形
算法
uesowys12 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
ValhallaCoder12 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮12 小时前
AI 视觉连载1:像素
算法
智驱力人工智能12 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
孞㐑¥13 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法
月挽清风13 小时前
代码随想录第十五天
数据结构·算法·leetcode
XX風13 小时前
8.1 PFH&&FPFH
图像处理·算法
NEXT0614 小时前
前端算法:从 O(n²) 到 O(n),列表转树的极致优化
前端·数据结构·算法
代码游侠14 小时前
学习笔记——设备树基础
linux·运维·开发语言·单片机·算法