新手解锁语言之力:理解 PyTorch 中 Transformer 组件

目录

torch.nn子模块transformer详解

nn.Transformer

[Transformer 类描述](#Transformer 类描述)

[Transformer 类的功能和作用](#Transformer 类的功能和作用)

[Transformer 类的参数](#Transformer 类的参数)

[forward 方法](#forward 方法)

参数

输出

示例代码

注意事项

nn.TransformerEncoder

[TransformerEncoder 类描述](#TransformerEncoder 类描述)

[TransformerEncoder 类的功能和作用](#TransformerEncoder 类的功能和作用)

[TransformerEncoder 类的参数](#TransformerEncoder 类的参数)

[forward 方法](#forward 方法)

参数

返回类型

形状

示例代码

nn.TransformerDecoder

[TransformerDecoder 类描述](#TransformerDecoder 类描述)

[TransformerDecoder 类的功能和作用](#TransformerDecoder 类的功能和作用)

[TransformerDecoder 类的参数](#TransformerDecoder 类的参数)

[forward 方法](#forward 方法)

参数

返回类型

形状

示例代码

nn.TransformerEncoderLayer

[TransformerEncoderLayer 类描述](#TransformerEncoderLayer 类描述)

[TransformerEncoderLayer 类的功能和作用](#TransformerEncoderLayer 类的功能和作用)

[TransformerEncoderLayer 类的参数](#TransformerEncoderLayer 类的参数)

[forward 方法](#forward 方法)

参数

返回类型

形状

示例代码

nn.TransformerDecoderLayer

[TransformerDecoderLayer 类描述](#TransformerDecoderLayer 类描述)

[TransformerDecoderLayer 类的功能和作用](#TransformerDecoderLayer 类的功能和作用)

[TransformerDecoderLayer 类的参数](#TransformerDecoderLayer 类的参数)

[forward 方法](#forward 方法)

参数

返回类型

形状

示例代码

总结


torch.nn子模块transformer详解

nn.Transformer

Transformer 类描述

torch.nn.Transformer 类是 PyTorch 中实现 Transformer 模型的核心类。基于 2017 年的论文 "Attention Is All You Need",该类提供了构建 Transformer 模型的完整功能,包括编码器(Encoder)和解码器(Decoder)部分。用户可以根据需要调整各种属性。

Transformer 类的功能和作用
  • 多头注意力: Transformer 使用多头自注意力机制,允许模型同时关注输入序列的不同位置。
  • 编码器和解码器: 包含多个编码器和解码器层,每层都有自注意力和前馈神经网络。
  • 适用范围广泛: 被广泛用于各种 NLP 任务,如语言翻译、文本生成等。
Transformer 类的参数
  1. d_model (int): 编码器/解码器输入的特征数(默认值为512)。
  2. nhead (int): 多头注意力模型中的头数(默认值为8)。
  3. num_encoder_layers (int): 编码器中子层的数量(默认值为6)。
  4. num_decoder_layers (int): 解码器中子层的数量(默认值为6)。
  5. dim_feedforward (int): 前馈网络模型的维度(默认值为2048)。
  6. dropout (float): Dropout 值(默认值为0.1)。
  7. activation (str 或 Callable): 编码器/解码器中间层的激活函数,默认为 ReLU。
  8. custom_encoder/decoder (可选): 自定义的编码器或解码器(默认值为None)。
  9. layer_norm_eps (float): 层归一化组件中的 eps 值(默认值为1e-5)。
  10. batch_first (bool): 如果为 True,则输入和输出张量的格式为 (batch, seq, feature)(默认值为False)。
  11. norm_first (bool): 如果为 True,则在其他注意力和前馈操作之前进行层归一化(默认值为False)。
  12. bias (bool): 如果设置为 False,则线性和层归一化层将不学习附加偏置(默认值为True)。
forward 方法

forward 方法用于处理带掩码的源/目标序列。

参数
  • src (Tensor): 编码器的输入序列。
  • tgt (Tensor): 解码器的输入序列。
  • src/tgt/memory_mask (可选): 序列掩码。
  • src/tgt/memory_key_padding_mask (可选): 键填充掩码。
  • src/tgt/memory_is_causal (可选): 指定是否应用因果掩码。
输出
  • 输出 Tensor 的形状为 (T, N, E)(N, T, E)(如果 batch_first=True),其中 T 是目标序列长度,N 是批次大小,E 是特征数。
示例代码
python 复制代码
import torch
import torch.nn as nn

# 创建 Transformer 实例
transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)

# 输入数据
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))

# 前向传播
out = transformer_model(src, tgt)

这段代码展示了如何创建并使用 Transformer 模型。在这个例子中,srctgt 分别是随机生成的编码器和解码器的输入张量。输出 out 是模型的最终输出。

注意事项
  • 掩码生成 : 可以使用 generate_square_subsequent_mask 方法来生成序列的因果掩码。
  • 配置灵活性: 由于 Transformer 类的可配置性,用户可以轻松调整模型结构以适应不同的任务需求。

nn.TransformerEncoder

TransformerEncoder 类描述

torch.nn.TransformerEncoder 类在 PyTorch 中实现了 Transformer 模型的编码器部分。它是一系列编码器层的堆叠,用户可以通过这个类构建类似于 BERT 的模型。

TransformerEncoder 类的功能和作用
  • 多层编码器结构: TransformerEncoder 由多个 Transformer 编码器层组成,每一层都包括自注意力机制和前馈网络。
  • 适用于各种 NLP 任务: 可用于语言模型、文本分类等多种自然语言处理任务。
  • 灵活性和可定制性: 用户可以自定义编码器层的数量和层参数,以适应不同的应用需求。
TransformerEncoder 类的参数
  1. encoder_layer : TransformerEncoderLayer 实例,表示单个编码器层(必需)。
  2. num_layers: 编码器中子层的数量(必需)。
  3. norm: 层归一化组件(可选)。
  4. enable_nested_tensor: 如果为 True,则输入会自动转换为嵌套张量(在输出时转换回来),当填充率较高时,这可以提高 TransformerEncoder 的整体性能。默认为 True(启用)。
  5. mask_check: 是否检查掩码。默认为 True。
forward 方法

forward 方法用于顺序通过编码器层处理输入。

参数
  • src (Tensor): 编码器的输入序列(必需)。
  • mask (可选 Tensor): 源序列的掩码(可选)。
  • src_key_padding_mask (可选 Tensor): 批次中源键的掩码(可选)。
  • is_causal (可选 bool): 如指定,应用因果掩码。默认为 None;尝试检测因果掩码。
返回类型
  • Tensor
形状
  • 请参阅 Transformer 类中的文档。
示例代码
python 复制代码
import torch
import torch.nn as nn

# 创建 TransformerEncoderLayer 实例
encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)

# 创建 TransformerEncoder 实例
transformer_encoder = nn.TransformeEncoder(encoder_layer, num_layers=6)

# 输入数据
src = torch.rand(10, 32, 512)  # 随机输入

# 前向传播
out = transformer_encoder(src)

这段代码展示了如何创建并使用 TransformerEncoder。在这个例子中,src 是随机生成的输入张量,transformer_encoder 是由 6 层编码器层组成的编码器。输出 out 是编码器的最终输出。

nn.TransformerDecoder

TransformerDecoder 类描述

torch.nn.TransformerDecoder 类实现了 Transformer 模型的解码器部分。它是由多个解码器层堆叠而成,用于处理编码器的输出并生成最终的输出序列。

TransformerDecoder 类的功能和作用
  • 多层解码器结构: TransformerDecoder 由多个 Transformer 解码器层组成,每层包括自注意力机制、交叉注意力机制和前馈网络。
  • 处理编码器输出: 解码器用于处理编码器的输出,并根据此输出和之前生成的输出序列生成新的输出。
  • 应用场景广泛: 适用于各种基于 Transformer 的生成任务,如机器翻译、文本摘要等。
TransformerDecoder 类的参数
  1. decoder_layer : TransformerDecoderLayer 实例,表示单个解码器层(必需)。
  2. num_layers: 解码器中子层的数量(必需)。
  3. norm: 层归一化组件(可选)。
forward 方法

forward 方法用于将输入(及掩码)依次通过解码器层进行处理。

参数
  • tgt (Tensor): 解码器的输入序列(必需)。
  • memory (Tensor): 编码器的最后一层输出序列(必需)。
  • tgt/memory_mask (可选 Tensor): 目标/内存序列的掩码(可选)。
  • tgt/memory_key_padding_mask (可选 Tensor): 批次中目标/内存键的掩码(可选)。
  • tgt_is_causal/memory_is_causal (可选 bool): 指定是否应用因果掩码。
返回类型
  • Tensor
形状
  • 请参阅 Transformer 类中的文档。
示例代码
python 复制代码
import torch
import torch.nn as nn

# 创建 TransformerDecoderLayer 实例
decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)

# 创建 TransformerDecoder 实例
transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)

# 输入数据
memory = torch.rand(10, 32, 512)  # 编码器的输出
tgt = torch.rand(20, 32, 512)     # 解码器的输入

# 前向传播
out = transformer_decoder(tgt, memory)

这段代码展示了如何创建并使用 TransformerDecoder。在这个例子中,memory 是编码器的输出,tgt 是解码器的输入。输出 out 是解码器的最终输出。

nn.TransformerEncoderLayer

TransformerEncoderLayer 类描述

torch.nn.TransformerEncoderLayer 类构成了 Transformer 编码器的基础单元,每个编码器层包含一个自注意力机制和一个前馈网络。这种标准的编码器层基于论文 "Attention Is All You Need"。

TransformerEncoderLayer 类的功能和作用
  • 自注意力机制: 通过自注意力机制,每个编码器层能够捕获输入序列中不同位置间的关系。
  • 前馈网络: 为序列中的每个位置提供额外的转换。
  • 灵活性和可定制性: 用户可以根据应用需求修改或实现不同的编码器层。
TransformerEncoderLayer 类的参数
  1. d_model (int): 输入中预期的特征数量(必需)。
  2. nhead (int): 多头注意力模型中的头数(必需)。
  3. dim_feedforward (int): 前馈网络模型的维度(默认值=2048)。
  4. dropout (float): Dropout 值(默认值=0.1)。
  5. activation (str 或 Callable): 中间层的激活函数,可以是字符串("relu" 或 "gelu")或一元可调用对象。默认值:relu。
  6. layer_norm_eps (float): 层归一化组件中的 eps 值(默认值=1e-5)。
  7. batch_first (bool): 如果为 True,则输入和输出张量以 (batch, seq, feature) 的格式提供。默认值:False(seq, batch, feature)。
  8. norm_first (bool): 如果为 True,则在注意力和前馈操作之前进行层归一化。否则之后进行。默认值:False(之后)。
  9. bias (bool): 如果设置为 False,则线性和层归一化层将不会学习附加偏置。默认值:True。
forward 方法

forward 方法用于将输入通过编码器层进行处理。

参数
  • src (Tensor): 传递给编码器层的序列(必需)。
  • src_mask (可选 Tensor): 源序列的掩码(可选)。
  • src_key_padding_mask (可选 Tensor): 批次中源键的掩码(可选)。
  • is_causal (bool): 如果指定,则应用因果掩码作为源掩码。默认值:False。
返回类型
  • Tensor
形状
  • 请参阅 Transformer 类中的文档。
示例代码
python 复制代码
import torch
import torch.nn as nn

# 创建 TransformerEncoderLayer 实例
encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)

# 输入数据
src = torch.rand(10, 32, 512)  # 随机输入

# 前向传播
out = encoder_layer(src)

或者在 batch_first=True 的情况下:

python 复制代码
encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
src = torch.rand(32, 10, 512)
out = encoder_layer(src)

这段代码展示了如何创建并使用 TransformerEncoderLayer。在这个例子中,src 是随机生成的输入张量。输出 out 是编码器层的输出。

nn.TransformerDecoderLayer

TransformerDecoderLayer 类描述

torch.nn.TransformerDecoderLayer 类是构成 Transformer 模型解码器的基本单元。这个标准的解码器层基于论文 "Attention Is All You Need"。它由自注意力机制、多头注意力机制和前馈网络组成。

TransformerDecoderLayer 类的功能和作用
  • 自注意力和多头注意力机制: 使解码器能够同时关注输入序列的不同部分。
  • 前馈网络: 为序列中的每个位置提供额外的转换。
  • 灵活性和可定制性: 用户可以根据应用需求修改或实现不同的解码器层。
TransformerDecoderLayer 类的参数
  1. d_model (int): 输入中预期的特征数量(必需)。
  2. nhead (int): 多头注意力模型中的头数(必需)。
  3. dim_feedforward (int): 前馈网络模型的维度(默认值=2048)。
  4. dropout (float): Dropout 值(默认值=0.1)。
  5. activation (str 或 Callable): 中间层的激活函数,可以是字符串("relu" 或 "gelu")或一元可调用对象。默认值:relu。
  6. layer_norm_eps (float): 层归一化组件中的 eps 值(默认值=1e-5)。
  7. batch_first (bool): 如果为 True,则输入和输出张量以 (batch, seq, feature) 的格式提供。默认值:False(seq, batch, feature)。
  8. norm_first (bool): 如果为 True,则在自注意力、多头注意力和前馈操作之前进行层归一化。否则之后进行。默认值:False(之后)。
  9. bias (bool): 如果设置为 False,则线性和层归一化层将不会学习附加偏置。默认值:True。
forward 方法

forward 方法用于将输入(及掩码)通过解码器层进行处理。

参数
  • tgt (Tensor): 解码器层的输入序列(必需)。
  • memory (Tensor): 编码器的最后一层输出序列(必需)。
  • tgt/memory_mask (可选 Tensor): 目标/内存序列的掩码(可选)。
  • tgt/memory_key_padding_mask (可选 Tensor): 批次中目标/内存键的掩码(可选)。
  • tgt_is_causal/memory_is_causal (bool): 指定是否应用因果掩码。
返回类型
  • Tensor
形状
  • 请参阅 Transformer 类中的文档。
示例代码
python 复制代码
import torch
import torch.nn as nn

# 创建 TransformerDecoderLayer 实例
decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)

# 输入数据
memory = torch.rand(10, 32, 512)  # 编码器的输出
tgt = torch.rand(20, 32, 512)     # 解码器的输入

# 前向传播
out = decoder_layer(tgt, memory)

或者在 batch_first=True 的情况下:

python 复制代码
decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True)
memory = torch.rand(32, 10, 512)
tgt = torch.rand(32, 20, 512)
out = decoder_layer(tgt, memory)

这段代码展示了如何创建并使用 TransformerDecoderLayer。在这个例子中,memory 是编码器的输出,tgt 是解码器的输入。输出 out 是解码器层的输出。

总结

本篇博客深入探讨了 PyTorch 的 torch.nn 子模块中与 Transformer 相关的核心组件。我们详细介绍了 nn.Transformer 及其构成部分 ------ 编码器 (nn.TransformerEncoder) 和解码器 (nn.TransformerDecoder),以及它们的基础层 ------ nn.TransformerEncoderLayernn.TransformerDecoderLayer。每个部分的功能、作用、参数配置和实际应用示例都被全面解析。这些组件不仅提供了构建高效、灵活的 NLP 模型的基础,还展示了如何通过自注意力和多头注意力机制来捕捉语言数据中的复杂模式和长期依赖关系。

相关推荐
小毕超3 分钟前
基于 PyTorch 从零手搓一个GPT Transformer 对话大模型
pytorch·gpt·transformer
千天夜31 分钟前
激活函数解析:神经网络背后的“驱动力”
人工智能·深度学习·神经网络
大数据面试宝典32 分钟前
用AI来写SQL:让ChatGPT成为你的数据库助手
数据库·人工智能·chatgpt
封步宇AIGC37 分钟前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
m0_5236742139 分钟前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
HappyAcmen1 小时前
IDEA部署AI代写插件
java·人工智能·intellij-idea
噜噜噜噜鲁先森1 小时前
看懂本文,入门神经网络Neural Network
人工智能
InheritGuo2 小时前
It’s All About Your Sketch: Democratising Sketch Control in Diffusion Models
人工智能·计算机视觉·sketch
weixin_307779132 小时前
证明存在常数c, C > 0,使得在一系列特定条件下,某个特定投资时刻出现的概率与天数的对数成反比
人工智能·算法·机器学习
封步宇AIGC2 小时前
量化交易系统开发-实时行情自动化交易-3.4.1.6.A股宏观经济数据
人工智能·python·机器学习·数据挖掘