Hive09_函数

HIVE函数

系统内置函数

1)查看系统自带的函数

shell 复制代码
hive> show functions;

2)显示自带的函数的用法

shell 复制代码
hive> desc function upper;

3)详细显示自带的函数的用法

sh 复制代码
hive> desc function extended upper;

hive函数分类

1、UDF:用户定义(普通)函数,只对单行数值产生作用;(一进一出)

2、UDAF:User- Defined Aggregation Funcation;用户定义聚合函数,可对多行数据产生作用;等同与SQL中常用的SUM(),AVG(),也是聚合函数;(多进一出)

3.UDTF:User-Defined Table-Generating Functions,用户定义表生成函数,用来解决输入一行输出多行(炸裂函数,一进多出);

常用内置函数

1 空字段赋值 NVL

1)函数说明

NVL:给值为 NULL 的数据赋值,它的格式是 NVL( value,default_value)。它的功能是如

果 value 为 NULL,则 NVL 函数返回 default_value 的值,否则返回 value 的值,如果两个参数

都为 NULL ,则返回 NULL。

2)数据准备:

采用员工表

3)查询:

如果员工的 comm 为 NULL,则用-1 代替

sql 复制代码
hive (default)> select comm,nvl(comm, -1) from emp;

OK
comm _c1
NULL -1.0
300.0 300.0
500.0 500.0
NULL -1.0
1400.0 1400.0
NULL -1.0
NULL -1.0
NULL -1.0
NULL -1.0
0.0 0.0
NULL -1.0
NULL -1.0
NULL -1.0
NULL -1.0

4)查询:

如果员工的 comm 为 NULL,则用领导 id 代替

sql 复制代码
hive (default)> select comm, nvl(comm,mgr) from emp;
OK
comm _c1
NULL 7902.0
300.0 300.0
500.0 500.0
NULL 7839.0
1400.0 1400.0
NULL 7839.0
NULL 7839.0
NULL 7566.0
NULL NULL
0.0 0.0
NULL 7788.0
NULL 7698.0
NULL 7566.0
NULL 7782.0

2 CASE WHEN THEN ELSE END

1) 数据准备

2)需求求出不同部门男女各多少人。

结果如下:

dept_Id 男孩 女孩

A 2 1

B 1 2

sql 复制代码
select 
	dept_id,
	sum(case sex when '男'  then 1 else 0 end) as "男孩",
	sum(case sex when '女' then 1 else 0 end) as "女孩"
from 
	emp_sex 
group by 
	dept_id;

3)创建本地 emp_sex.txt,导入数据

sh 复制代码
[root@localhost datas]$ vi emp_sex.txt
悟空	A	男
大海	A	男
宋宋	B	男
凤姐	A	女
婷姐	B	女
婷婷	B	女

4)创建 hive 表并导入数据

sql 复制代码
create table emp_sex(
name string, 
dept_id string, 
sex string) 
row format delimited fields terminated by "\t";

load data local inpath '/usr/soft/datas/emp_sex.txt' into table emp_sex;

5)按需求查询数据

sql 复制代码
select
 dept_id,
 sum(case sex when '男' then 1 else 0 end) male_count,
 sum(case sex when '女' then 1 else 0 end) female_count
from emp_sex
group by dept_id;

3 行转列

1)相关函数说明

CONCAT(string A/col, string B/col...):

返回输入字符串连接后的结果,支持任意个输入字符串;

CONCAT_WS(separator, str1, str2,...):

它是一个特殊形式的 CONCAT()。第一个参数剩余参数间的分隔符。分隔符可以是与剩余参数一样的字符串。如果分隔符是 NULL,返回值也将为 NULL。这个函数会跳过分隔符参数后的任何 NULL 和空字符串。分隔符将被加到被连接的字符串之间;
注意: CONCAT_WS must be "string or array

COLLECT_SET(col):

函数只接受基本数据类型,它的主要作用是将某字段的值进行去重汇总,产生 Array 类型字段。

2)数据准备

3)需求

把星座和血型一样的人归类到一起。结果如下:

射手座,A 大海|凤姐
白羊座,A 孙悟空|猪八戒
白羊座,B 宋宋|紫霞
sql 复制代码
select 
	t.cb,
	concat_ws('|',collect_set(t.name))
from
	(select name ,concat_ws(',',constellation,blood_type)cb from person_info) t
group by
	t.cb;
	
	

name		cb
孙悟空		白羊座,A
大海		射手座,A
宋宋		白羊座,B
猪八戒		白羊座,A
凤姐		射手座,A
紫霞		白羊座,B

4)创建本地 constellation.txt,导入数据

sh 复制代码
[root@localhost datas]$ vim person_info.txt
孙悟空  白羊座  A
大海    射手座  A
宋宋    白羊座  B
猪八戒  白羊座  A
凤姐    射手座  A
紫霞    白羊座  B

5)创建 hive 表并导入数据

sql 复制代码
create table person_info(
name string, 
constellation string, 
blood_type string) 
row format delimited fields terminated by "\t";

load data local inpath "/usr/soft/datas/person_info.txt" into table person_info;

6)按需求查询数据

sql 复制代码
SELECT
	t1.c_b,
	CONCAT_WS("|",collect_set(t1.name))
FROM (
    SELECT
    	NAME,
    	CONCAT_WS(',',constellation,blood_type) c_b
    FROM person_info
    )t1
	GROUP BY t1.c_b

4 列转行

1)函数说明

EXPLODE(col):将 hive 一列中复杂的 Array 或者 Map 结构拆分成多行。

LATERAL VIEW
用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias

解释:用于和 split, explode 等 UDTF 一起使用,它能够将一列数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。

String s ="hello,world";

s.split(","); =====> [ "悬疑" , "动作" ,"科幻"]

2)数据准备

split( "category" , ",") -----> [ "悬疑" , "动作", "科幻", "剧情" ] array

explode (array) -----> 悬疑 动作 科幻 剧情

LATERAL VIEW

3)需求

将电影分类中的数组数据展开。结果如下:

《疑犯追踪》 悬疑
《疑犯追踪》 动作
《疑犯追踪》 科幻
《疑犯追踪》 剧情
《Lie to me》 悬疑
《Lie to me》 警匪
《Lie to me》 动作
《Lie to me》 心理
《Lie to me》 剧情
《战狼 2》 战争
《战狼 2》 动作
《战狼 2》 灾难
sql 复制代码
select 
	movie,cates
from
	movie_info
lateral view 
	explode(split(category,",")) cate as cates;
	
	
	
	
	
select   lateral view( explode(  split(category,",")  ) ) from movie_info;
4)创建本地 movie.txt,导入数据
sql 复制代码
[root@localhost datas]$ vi movie_info.txt

《疑犯追踪》 悬疑,动作,科幻,剧情
《Lie to me》悬疑,警匪,动作,心理,剧情
《战狼 2》 战争,动作,灾难
5)创建 hive 表并导入数据
sql 复制代码
create table movie_info(
 	movie string,
 	category string)
row format delimited fields terminated by "\t";

load data local inpath "/usr/soft/datas/movie_info.txt" into table movie_info;
6)按需求查询数据
sql 复制代码
SELECT
	movie,
	category_name
FROM
	movie_info
lateral VIEW
	explode(split(category,",")) movie_info_tmp AS category_name;
5)创建 hive 表并导入数据
sql 复制代码
create table movie_info(
 	movie string,
 	category string)
row format delimited fields terminated by "\t";

load data local inpath "/usr/soft/datas/movie_info.txt" into table movie_info;
6)按需求查询数据
sql 复制代码
SELECT
	movie,
	category_name
FROM
	movie_info
lateral VIEW
	explode(split(category,",")) movie_info_tmp AS category_name;
相关推荐
WTT00111 小时前
2024楚慧杯WP
大数据·运维·网络·安全·web安全·ctf
云云3216 小时前
怎么通过亚矩阵云手机实现营销?
大数据·服务器·安全·智能手机·矩阵
新加坡内哥谈技术6 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
Data-Miner7 小时前
经典案例PPT | 大型水果连锁集团新零售数字化建设方案
大数据·big data
lovelin+v175030409667 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
道一云黑板报7 小时前
Flink集群批作业实践:七析BI批作业执行
大数据·分布式·数据分析·flink·kubernetes
节点。csn7 小时前
flink集群搭建 详细教程
大数据·服务器·flink
数据爬坡ing8 小时前
小白考研历程:跌跌撞撞,起起伏伏,五个月备战历程!!!
大数据·笔记·考研·数据分析
云云3218 小时前
云手机方案全解析
大数据·服务器·安全·智能手机·矩阵