工智能基础知识总结--什么是TextCNN

  1. 什么是TextCNN

    Yoon Kim在论文(2014 EMNLP) Convolutional Neural Networks for Sentence Classification提出TextCNN,该模型将卷积神经网络CNN应用到文本分类任务,是卷积神经网络应用到文本分析的开创性工作之⼀。

  2. TextCNN的结构

    TextCNN的结构图如下:

    具体包含如下结构:

    • Embedding层

      将词的One-hot表示映射为稠密向量表示。

    • 一维卷积层

      宽度设为词嵌入维度,高度为卷积核大小(超参数),在word-level上进行一维卷积。虽然文本经过词嵌入后是二维数据,但是在embedding-level上的二维卷积没有意义。同一卷积核大小一般设置多个卷积核来提取不同的特征。

    • 时序最大池化层

      对一个卷积核得到的feature map取最大值,由于一个卷积核是在word-level即按照时序进行卷积的,所以称为时序最大池化(max-over-time pooling)。

    • 全连接层

      将各个卷积、池化后的结果拼接后经过最后一层或多层全连接层将特征转化为label的概率分布。

  3. TextCNN学到了什么

    TextCNN不同大小的卷积核学习到的是卷积核大小n对应的某个n-gram特征,时序最大池化层提取句子中该特征的最大取值,最后的全连接层组合这些n-gram特征进行分类。因此,TextCNN能够学习到很多用于分类的局部的特征,适用于短文本的分类,而对于有较长依赖关系的长文本分类效果较差。

相关推荐
那个村的李富贵6 分钟前
昇腾CANN跨行业实战:五大新领域AI落地案例深度解析
人工智能·aigc·cann
集简云-软件连接神器9 分钟前
技术实战:集简云语聚AI实现小红书私信接入AI大模型全流程解析
人工智能·小红书·ai客服
松☆9 分钟前
深入理解CANN:面向AI加速的异构计算架构
人工智能·架构
rainbow72424410 分钟前
无基础学AI的入门核心,从基础工具和理论开始学
人工智能
子榆.14 分钟前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow
七月稻草人15 分钟前
CANN生态ops-nn:AIGC的神经网络算子加速内核
人工智能·神经网络·aigc
2501_9248787316 分钟前
数据智能驱动进化:AdAgent 多触点归因与自我学习机制详解
人工智能·逻辑回归·动态规划
芷栀夏17 分钟前
CANN开源实战:基于DrissionPage构建企业级网页自动化与数据采集系统
运维·人工智能·开源·自动化·cann
物联网APP开发从业者18 分钟前
2026年AI智能软硬件开发领域十大权威认证机构深度剖析
人工智能
MSTcheng.22 分钟前
构建自定义算子库:基于ops-nn和aclnn两阶段模式的创新指南
人工智能·cann