《数字图像处理》第七章 小波域多分辨率处理 学习笔记

小波域多分辨率处理

    • [0. 前言](#0. 前言)
    • [1. 背景](#1. 背景)
      • [1.1 图像金字塔](#1.1 图像金字塔)
      • [1.2 子带编码](#1.2 子带编码)
    • [2. 多分辨率展开](#2. 多分辨率展开)
      • [2.1 级数展开](#2.1 级数展开)
      • [2.2 尺度函数](#2.2 尺度函数)
      • [2.3 小波函数](#2.3 小波函数)

0. 前言

本章难度大(看不太懂),没有什么详细记录,大家还得自行查阅其他相关博客视频等。

小波变换基于小型波(傅里叶变换以正弦函数为基函数).

FT的结果完全丢失了时间信息, 而小波变换的意义就在于判断什么时间(间隔)出现什么样的频谱成分.

辅助材料: THE WAVELET TUTORIAL (unr.edu)

辅助视频: Wavelets: a mathematical microscope (youtube.com)

第三版教材中图片下载地址: book images downloads

vs2019配置opencv可以查看:VS2019 & Opencv4.5.4配置教程

前情回顾:
数字图像处理第三章 灰度变换和空间滤波 学习笔记
数字图像处理第四章 频率域滤波 学习笔记

数字图像处理第五章 图像复原和重建(内容较简单,就没有详细记录笔记)
数字图像处理第六章 彩色图像处理 学习笔记

后续剧情:
数字图像处理 第九章 形态学图像处理 学习笔记
数字图像处理 第十章 图像分割 学习笔记
数字图像处理 第11章 标识和描述 学习笔记

1. 背景

1.1 图像金字塔

  • 步骤1: 计算第j-1级近似. 第j级通过滤波并以2为因子进行下采样.

  • 步骤2: 通过对步骤1结果进行上采样, 得到第j级预测值.

  • 步骤3: 汁算步骤 2 的预测图像和步骤 1 的输入之间的差. 把得到的结果放在预测残差金字塔的第j级。

c 复制代码
void test04(string path) {
    Mat img = imread(path);
    if (img.empty()) {
        cout << "Error: unable to load the image\n";
        return;
    }

    //构建图像金字塔
    vector<Mat> pyramid;
    pyramid.push_back(img.clone());
    for(int i = 0; i < 4; i++) {
        Mat blurred;
        GaussianBlur(pyramid.back(), blurred, Size(5, 5), 0, 0);
        Mat downsampled;
        pyrDown(blurred, downsampled);
        pyramid.push_back(downsampled);
    }

    //构建残差金字塔
    vector<Mat> residualPyramid;
    for (int i = 1; i < pyramid.size(); i++) {
        Mat upsampled;
        pyrUp(pyramid[i], upsampled, Size(pyramid[i - 1].cols, pyramid[i - 1].rows));
        residualPyramid.push_back(pyramid[i - 1] - upsampled);
    }

    for (int i = 0; i < pyramid.size() - 1; i++) {
        imshow("level_" + to_string(i), pyramid[i]);
        imshow("residual" + to_string(i), residualPyramid[i]);
    }
    waitKey(0);
}

1.2 子带编码

2. 多分辨率展开

多分辨率分析(MRA)中, 尺度函数被建立成一个函数或一幅图像的一系列近似值, 每个近似与其最近邻近似在分辨率方面都用因子2来区分.

2.1 级数展开

2.2 尺度函数

2.3 小波函数

小波函数是小波变换的基础,以下是整个小波函数家族

小波函数的满足条件:

  1. 积分为 0 , ∫ − ∞ + ∞ ψ ( t ) d t = 0 积分为0, \int_{-\infty}^{+\infty}\psi (t)dt =0 积分为0,∫−∞+∞ψ(t)dt=0

  2. 能量有限 , ∫ − ∞ + ∞ ∣ ψ ( t ) ∣ 2 d t < ∞ 能量有限, \int_{-\infty}^{+\infty}|\psi (t)|^2 dt < \infty 能量有限,∫−∞+∞∣ψ(t)∣2dt<∞

将小波函数进行平移缩放

ψ a , b = ψ ( t − b a ) \psi_{a,b}= \psi(\frac{t-b}{a}) ψa,b=ψ(at−b)

其中, b表示平移因子, a表示缩放因子

某一小波函数对于信号y(t)具有的贡献:

T ( a , b ) = ∫ − ∞ + ∞ y ( t ) ⋅ ψ a , b ( t ) d t T(a, b)=\int_{-\infty}^{+\infty}y(t)\cdot \psi _{a,b}(t)dt T(a,b)=∫−∞+∞y(t)⋅ψa,b(t)dt

相关推荐
方见华Richard39 分钟前
方见华:在递归的暗夜里,把自己活成一束光
人工智能·经验分享·笔记·学习方法·空间计算
zzcufo41 分钟前
多邻国学习笔记第五阶段第10-11部分
笔记·学习·c#
BlackWolfSky1 小时前
鸿蒙中级课程笔记2—状态管理V2—@ObservedV2装饰器和@Trace装饰器:类属性变化观测
笔记·华为·harmonyos
jojo_zjx1 小时前
GESP 24年12月2级 数位和
c++
自由的好好干活1 小时前
PCI9x5x驱动移植支持PCI9054在win7下使用3
c++·驱动开发
航Hang*1 小时前
计算机等级考试(二级WPS)---第1章:综合应用基础---第2节:PDF文件应用
笔记·学习·pdf·wps·计算机二级·计算机等级考试
zhangrelay1 小时前
Linux(ubuntu)如何锁定cpu频率工作在最低能耗模式下
linux·笔记·学习
三伏5221 小时前
Cortex-M3权威指南Cn第四、五章——笔记
笔记·cortex-m3
老神在在0011 小时前
Token身份验证完整流程
java·前端·后端·学习·java-ee
轴测君2 小时前
MobileNet V1
人工智能·pytorch·笔记