代码随想录刷题题Day26

刷题的第二十六天,希望自己能够不断坚持下去,迎来蜕变。😀😀😀

刷题语言:C++

Day26 任务

动态规划理论基础

斐波那契数

爬楼梯

使用最小花费爬楼梯

1 动态规划理论基础

对于动态规划问题,拆解为五个步骤:

(1)确定dp数组以及下标的含义

(2)确定递推公式

(3)dp数组如何初始化

(4)遍历顺序

(5)举例推导dp数组

2 斐波那契数

斐波那契数

思路:
递归法

C++:

cpp 复制代码
class Solution {
public:
    int fib(int n) {
        if (n < 2) return n;
        return fib(n - 1) + fib(n - 2); 
    }
};

时间复杂度: O ( 2 n ) O(2^n) O(2n)

空间复杂度: O ( n ) O(n) O(n)
动态规划

用一个一维的dp数组保存递归的结果

(1)确定dp数组以及下标的含义

dp[i]的定义为:第i个数的斐波那契数值是dp[i]

(2)确定递推公式

状态转移方程: d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] dp[i] = dp[i - 1] + dp[i - 2] dp[i]=dp[i−1]+dp[i−2]

(3)dp数组如何初始化

cpp 复制代码
dp[0] = 0;
dp[1] = 1;

(4)遍历顺序

dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

(5)举例推导dp数组

把dp数组打印出来看看和我们推导的数列是不是一致的

C++:

cpp 复制代码
class Solution {
public:
    int fib(int n) {
        if (n <= 1) return n;
        vector<int> dp(n + 1);
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

时间复杂度: O ( n ) O(n) O(n)

空间复杂度: O ( n ) O(n) O(n)

本题只需要维护两个数值

C++:

cpp 复制代码
class Solution {
public:
    int fib(int n) {
        if (n <= 1) return n;
        int dp[2];
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            int sum = dp[0] + dp[1];
            dp[0] = dp[1];
            dp[1] = sum;
        }
        return dp[1];
    }
};

时间复杂度: O ( n ) O(n) O(n)

空间复杂度: O ( 1 ) O(1) O(1)

3 爬楼梯

爬楼梯

思路:
动态规划

(1)确定dp数组以及下标的含义

dp[i]: 爬到第i层楼梯,有dp[i]种方法

(2)确定递推公式

dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶就是dp[i]

dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶就是dp[i]
d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] dp[i] = dp[i - 1] + dp[i - 2] dp[i]=dp[i−1]+dp[i−2]

(3)dp数组如何初始化

cpp 复制代码
dp[0] = 1;
dp[1] = 1;

(4)遍历顺序:从前往后

(5)举例推导dp数组

C++:

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n;
        vector<int> dp(n + 1);
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

时间复杂度: O ( n ) O(n) O(n)

空间复杂度: O ( n ) O(n) O(n)

优化代码:

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n;
        int dp[3];
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {
            int sum = dp[1] + dp[2];
            dp[1] = dp[2];
            dp[2] = sum;
        }
        return dp[2];
    }
};

时间复杂度: O ( n ) O(n) O(n)

空间复杂度: O ( 1 ) O(1) O(1)

4 使用最小花费爬楼梯

使用最小花费爬楼梯

思路:
动态规划

可以选择从下标为0或下标为1的台阶开始爬楼梯就是相当于跳到下标 0或者下标1是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了

(1)确定dp数组以及下标的含义
dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]

(2)确定递推公式

有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]

dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]

dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]

cpp 复制代码
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

(3)dp数组如何初始化

cpp 复制代码
dp[0] = 0;
dp[1] = 0;

(4)遍历顺序:从前到后遍历cost数组

(5)举例推导dp数组

C++:

cpp 复制代码
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size() + 1);
        dp[0] = 0;// 默认第一步都是不花费体力的
        dp[1] = 0;
        for (int i = 2; i <= cost.size(); i++) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[cost.size()];
    }
};

时间复杂度: O ( n ) O(n) O(n)

空间复杂度: O ( n ) O(n) O(n)

优化:

cpp 复制代码
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int dp0 = 0;
        int dp1 = 0;
        for (int i = 2; i <= cost.size(); i++) {
            int dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2]);
            dp0 = dp1; // 记录一下前两位
            dp1 = dpi;
        }
        return dp1;
    }
};

时间复杂度: O ( n ) O(n) O(n)

空间复杂度: O ( 1 ) O(1) O(1)


鼓励坚持二十七天的自己😀😀😀

相关推荐
敲上瘾几秒前
高并发内存池(二):Central Cache的实现
linux·服务器·c++·缓存·哈希算法
闯闯爱编程34 分钟前
数组与特殊压缩矩阵
数据结构·算法·矩阵
SNAKEpc121381 小时前
在MFC中使用Qt(五):MFC和Qt的共存和交互
c++·qt·mfc
我们的五年1 小时前
【Linux系统】进程间通信-System V消息队列
linux·运维·服务器·c++
laimaxgg1 小时前
数据结构B树的实现
开发语言·数据结构·c++·b树·算法
mit6.8241 小时前
[Lc6_记忆化搜索] 最长递增子序列 | 矩阵中的最长递增路径
c++·算法·leetcode
灋✘逞_兇3 小时前
链表的操作-反转链表
数据结构·链表
Espresso Macchiato6 小时前
Leetcode 3500. Minimum Cost to Divide Array Into Subarrays
leetcode·动态规划·leetcode hard·leetcode 3500·leetcode双周赛153
双叶8368 小时前
(C语言)虚数运算(结构体教程)(指针解法)(C语言教程)
c语言·开发语言·数据结构·c++·算法·microsoft
工一木子8 小时前
大厂算法面试 7 天冲刺:第5天- 递归与动态规划深度解析 - 高频面试算法 & Java 实战
算法·面试·动态规划