PyTorch|view(),改变张量维度

在构建自己的网络时,了解数据经过每个层后的形状变化是必须的,否则,网络大概率会出现问题。PyToch张量有一个方法,叫做view(),使用这个方法,我们可以很容易的对张量的形状进行改变,从而符合网络的输入要求

view()的基本用法很简单,只需传入想要的形状即可,

就像这样:

复制代码
import torchT1=torch.arange(0,16)print(T1)print(T1.size())
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])torch.Size([16])
a=T1.view(4,4)b=T1.view(2,8)print(a)print(a.size())
print(b)print(b.size())
tensor([[ 0,  1,  2,  3],        [ 4,  5,  6,  7],        [ 8,  9, 10, 11],        [12, 13, 14, 15]])torch.Size([4, 4])
tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],        [ 8,  9, 10, 11, 12, 13, 14, 15]])torch.Size([2, 8])

当然,在看一些代码时,往往会发现view()中有参数-1。看下面几个例子​​​​​​​

复制代码
c=T1.view(-1,4,4)print(c)print(c.size())tensor([[[ 0,  1,  2,  3],         [ 4,  5,  6,  7],         [ 8,  9, 10, 11],         [12, 13, 14, 15]]])torch.Size([1, 4, 4]​​​​​​​

d=T1.view(-1,8)print(d)print(d.size())tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],        [ 8,  9, 10, 11, 12, 13, 14, 15]])torch.Size([2, 8])​​​​​​​

e=T1.view(8,-1)print(e)print(e.size())tensor([[ 0,  1],        [ 2,  3],        [ 4,  5],        [ 6,  7],        [ 8,  9],        [10, 11],        [12, 13],        [14, 15]])torch.Size([8, 2])

通过上述几个例子,view中一个参数定为-1,代表自动调整这个维度上的元素个数,同时保证元素的总个数不变当然,我们也注意到了这个细节:传入几个参数,代表结果有几个维度

对于这篇文章:张量扁平化------CNN的Flatten操作

保持batch轴不变,展平其它轴,我们采用的是flatten()方法,这里我们用view()方法。​​​​​​​

复制代码
t1=torch.rand([5,3,128,128])print(t1.size())
torch.Size([5, 3, 128, 128])​​​​​​​

t2=t1.view(5,-1)print(t2)print(t2.size())

结果符合我们的预期!

相关推荐
chem411113 分钟前
玩客云 边缘AI模型 本地搭建部署 llama.cpp qwen
linux·人工智能·llama
清 晨15 分钟前
TikTok Shop 跨境卖家最新合规与增长应对:从“内容冲量”升级为“商品与履约可控”
大数据·人工智能·跨境电商·tiktok·营销策略
轴测君17 分钟前
MobileNet V1
人工智能·pytorch·笔记
ASS-ASH28 分钟前
霸王色霸气的本质概括分析
人工智能·python·机器学习·大脑·脑电波
bst@微胖子32 分钟前
LlamaIndex数据准备 + Hugging Face模型微调 + LlamaIndex RAG集成实现企业产品知识库微调
人工智能·机器学习
ValidationExpression34 分钟前
学习:词嵌入(Word Embedding / Text Embedding)技术
python·学习·ai
CoCo的编程之路44 分钟前
从“手写UI”到“智能生成”的工具深度评测
人工智能·ai编程·comate·智能编程助手·文心快码baiducomate
liliangcsdn1 小时前
如何使用lambda对python列表进行排序
开发语言·python
YH12312359h1 小时前
YOLOv8_PST模型玉米生长阶段自动识别与分类
人工智能·yolo·分类
水如烟1 小时前
孤能子视角:“隋唐“
人工智能