PyTorch|view(),改变张量维度

在构建自己的网络时,了解数据经过每个层后的形状变化是必须的,否则,网络大概率会出现问题。PyToch张量有一个方法,叫做view(),使用这个方法,我们可以很容易的对张量的形状进行改变,从而符合网络的输入要求

view()的基本用法很简单,只需传入想要的形状即可,

就像这样:

复制代码
import torchT1=torch.arange(0,16)print(T1)print(T1.size())
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])torch.Size([16])
a=T1.view(4,4)b=T1.view(2,8)print(a)print(a.size())
print(b)print(b.size())
tensor([[ 0,  1,  2,  3],        [ 4,  5,  6,  7],        [ 8,  9, 10, 11],        [12, 13, 14, 15]])torch.Size([4, 4])
tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],        [ 8,  9, 10, 11, 12, 13, 14, 15]])torch.Size([2, 8])

当然,在看一些代码时,往往会发现view()中有参数-1。看下面几个例子​​​​​​​

复制代码
c=T1.view(-1,4,4)print(c)print(c.size())tensor([[[ 0,  1,  2,  3],         [ 4,  5,  6,  7],         [ 8,  9, 10, 11],         [12, 13, 14, 15]]])torch.Size([1, 4, 4]​​​​​​​

d=T1.view(-1,8)print(d)print(d.size())tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],        [ 8,  9, 10, 11, 12, 13, 14, 15]])torch.Size([2, 8])​​​​​​​

e=T1.view(8,-1)print(e)print(e.size())tensor([[ 0,  1],        [ 2,  3],        [ 4,  5],        [ 6,  7],        [ 8,  9],        [10, 11],        [12, 13],        [14, 15]])torch.Size([8, 2])

通过上述几个例子,view中一个参数定为-1,代表自动调整这个维度上的元素个数,同时保证元素的总个数不变当然,我们也注意到了这个细节:传入几个参数,代表结果有几个维度

对于这篇文章:张量扁平化------CNN的Flatten操作

保持batch轴不变,展平其它轴,我们采用的是flatten()方法,这里我们用view()方法。​​​​​​​

复制代码
t1=torch.rand([5,3,128,128])print(t1.size())
torch.Size([5, 3, 128, 128])​​​​​​​

t2=t1.view(5,-1)print(t2)print(t2.size())

结果符合我们的预期!

相关推荐
朗心心理几秒前
心灵栖所 · 未来疗愈场,长春师专打造“科技×艺术×东方正念”三维心理成长中心
人工智能·科技·心理
日日行不惧千万里2 分钟前
Java中Lambda Stream详解
java·开发语言·python
围炉聊科技4 分钟前
4090实战:ComfyUI运行Qwen-Image-Edit-2511模型指南(含避坑要点)
人工智能
沛沛老爹6 分钟前
从Web开发到AI应用——用FastGPT构建实时问答系统
前端·人工智能·langchain·rag·advanced-rag
戴西软件6 分钟前
CAxWorks.VPG车辆工程仿真软件:打造新能源汽车安全的“数字防线“
android·大数据·运维·人工智能·安全·低代码·汽车
yuanmenghao8 分钟前
自动驾驶中间件iceoryx-介绍
人工智能·中间件·自动驾驶
2401_841495648 分钟前
【LeetCode刷题】零钱兑换
数据结构·python·算法·leetcode·动态规划·数组·时间复杂度
weixin199701080169 分钟前
哔哩哔哩 item_search_video - 根据关键词获取视频列表接口对接全攻略:从入门到精通
人工智能·音视频
山海青风9 分钟前
人工智能基础与应用 - 数据处理、建模与预测流程 2 : 数据与问题类型
人工智能·python
这张生成的图像能检测吗10 分钟前
(论文速读)VJTNN+GAN分子优化的图到图翻译
人工智能·图神经网络·生成模型·分子设计·药物发现