PyTorch|view(),改变张量维度

在构建自己的网络时,了解数据经过每个层后的形状变化是必须的,否则,网络大概率会出现问题。PyToch张量有一个方法,叫做view(),使用这个方法,我们可以很容易的对张量的形状进行改变,从而符合网络的输入要求

view()的基本用法很简单,只需传入想要的形状即可,

就像这样:

复制代码
import torchT1=torch.arange(0,16)print(T1)print(T1.size())
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])torch.Size([16])
a=T1.view(4,4)b=T1.view(2,8)print(a)print(a.size())
print(b)print(b.size())
tensor([[ 0,  1,  2,  3],        [ 4,  5,  6,  7],        [ 8,  9, 10, 11],        [12, 13, 14, 15]])torch.Size([4, 4])
tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],        [ 8,  9, 10, 11, 12, 13, 14, 15]])torch.Size([2, 8])

当然,在看一些代码时,往往会发现view()中有参数-1。看下面几个例子​​​​​​​

复制代码
c=T1.view(-1,4,4)print(c)print(c.size())tensor([[[ 0,  1,  2,  3],         [ 4,  5,  6,  7],         [ 8,  9, 10, 11],         [12, 13, 14, 15]]])torch.Size([1, 4, 4]​​​​​​​

d=T1.view(-1,8)print(d)print(d.size())tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],        [ 8,  9, 10, 11, 12, 13, 14, 15]])torch.Size([2, 8])​​​​​​​

e=T1.view(8,-1)print(e)print(e.size())tensor([[ 0,  1],        [ 2,  3],        [ 4,  5],        [ 6,  7],        [ 8,  9],        [10, 11],        [12, 13],        [14, 15]])torch.Size([8, 2])

通过上述几个例子,view中一个参数定为-1,代表自动调整这个维度上的元素个数,同时保证元素的总个数不变当然,我们也注意到了这个细节:传入几个参数,代表结果有几个维度

对于这篇文章:张量扁平化------CNN的Flatten操作

保持batch轴不变,展平其它轴,我们采用的是flatten()方法,这里我们用view()方法。​​​​​​​

复制代码
t1=torch.rand([5,3,128,128])print(t1.size())
torch.Size([5, 3, 128, 128])​​​​​​​

t2=t1.view(5,-1)print(t2)print(t2.size())

结果符合我们的预期!

相关推荐
MARS_AI_14 分钟前
云蝠智能 VoiceAgent 2.0:全栈语音交互能力升级
人工智能·自然语言处理·交互·信息与通信·agi
top_designer19 分钟前
Substance 3D Stager:电商“虚拟摄影”工作流
人工智能·3d·设计模式·prompt·技术美术·教育电商·游戏美术
雷神大青椒20 分钟前
离别的十字路口: 是否还记得曾经追求的梦想
人工智能·程序人生·职场和发展·玩游戏
IT痴者1 小时前
《PerfettoSQL 的通用查询模板》---Android-trace
android·开发语言·python
m0_650108241 小时前
多模态大模型 VS. 图像视频生成模型浅析
人工智能·技术边界与协同·mllm与生成模型·技术浅谈
ai_xiaogui1 小时前
Mac苹果版Krita AI一键安装教程:AIStarter+ComfyUI零基础部署全流程(X86/ARM双架构)
arm开发·人工智能·macos·comfyui·一键部署·ai绘画教程·kritaai
lapiii3582 小时前
[智能体设计模式] 第11章:目标设定与监控模式
人工智能·设计模式
这张生成的图像能检测吗2 小时前
(论文速读)WFF-Net:用于表面缺陷检测的可训练权重特征融合卷积神经网络
人工智能·深度学习·神经网络·缺陷检测·图像分割
shayudiandian2 小时前
RNN与LSTM详解:AI是如何“记住”信息的?
人工智能·rnn·lstm
美人鱼战士爱学习2 小时前
2025 Large language models for intelligent RDF knowledge graph construction
人工智能·语言模型·知识图谱