PyTorch|view(),改变张量维度

在构建自己的网络时,了解数据经过每个层后的形状变化是必须的,否则,网络大概率会出现问题。PyToch张量有一个方法,叫做view(),使用这个方法,我们可以很容易的对张量的形状进行改变,从而符合网络的输入要求

view()的基本用法很简单,只需传入想要的形状即可,

就像这样:

复制代码
import torchT1=torch.arange(0,16)print(T1)print(T1.size())
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])torch.Size([16])
a=T1.view(4,4)b=T1.view(2,8)print(a)print(a.size())
print(b)print(b.size())
tensor([[ 0,  1,  2,  3],        [ 4,  5,  6,  7],        [ 8,  9, 10, 11],        [12, 13, 14, 15]])torch.Size([4, 4])
tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],        [ 8,  9, 10, 11, 12, 13, 14, 15]])torch.Size([2, 8])

当然,在看一些代码时,往往会发现view()中有参数-1。看下面几个例子​​​​​​​

复制代码
c=T1.view(-1,4,4)print(c)print(c.size())tensor([[[ 0,  1,  2,  3],         [ 4,  5,  6,  7],         [ 8,  9, 10, 11],         [12, 13, 14, 15]]])torch.Size([1, 4, 4]​​​​​​​

d=T1.view(-1,8)print(d)print(d.size())tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],        [ 8,  9, 10, 11, 12, 13, 14, 15]])torch.Size([2, 8])​​​​​​​

e=T1.view(8,-1)print(e)print(e.size())tensor([[ 0,  1],        [ 2,  3],        [ 4,  5],        [ 6,  7],        [ 8,  9],        [10, 11],        [12, 13],        [14, 15]])torch.Size([8, 2])

通过上述几个例子,view中一个参数定为-1,代表自动调整这个维度上的元素个数,同时保证元素的总个数不变当然,我们也注意到了这个细节:传入几个参数,代表结果有几个维度

对于这篇文章:张量扁平化------CNN的Flatten操作

保持batch轴不变,展平其它轴,我们采用的是flatten()方法,这里我们用view()方法。​​​​​​​

复制代码
t1=torch.rand([5,3,128,128])print(t1.size())
torch.Size([5, 3, 128, 128])​​​​​​​

t2=t1.view(5,-1)print(t2)print(t2.size())

结果符合我们的预期!

相关推荐
chenzhiyuan20181 分钟前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-1438 分钟前
51c深度学习~合集11
人工智能
Tiandaren16 分钟前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
卖个几把萌18 分钟前
【16】Selenium+Python 接管已打开谷歌浏览器
python·selenium·测试工具
像风一样的男人@41 分钟前
python --两个文件夹文件名比对(yolo 图和label标注比对检查)
windows·python·yolo
领航猿1号1 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
lllsure1 小时前
【Python】Dict(字典)
开发语言·python
综合热讯1 小时前
宠智灵宠物识别AI:从犬猫到鸟鱼的全生态智能识别
人工智能·宠物
zskj_zhyl1 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
化作星辰1 小时前
使用房屋价格预测的场景,展示如何从多个影响因素计算权重和偏置的梯度
pytorch·深度学习