PyTorch|view(),改变张量维度

在构建自己的网络时,了解数据经过每个层后的形状变化是必须的,否则,网络大概率会出现问题。PyToch张量有一个方法,叫做view(),使用这个方法,我们可以很容易的对张量的形状进行改变,从而符合网络的输入要求

view()的基本用法很简单,只需传入想要的形状即可,

就像这样:

复制代码
import torchT1=torch.arange(0,16)print(T1)print(T1.size())
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])torch.Size([16])
a=T1.view(4,4)b=T1.view(2,8)print(a)print(a.size())
print(b)print(b.size())
tensor([[ 0,  1,  2,  3],        [ 4,  5,  6,  7],        [ 8,  9, 10, 11],        [12, 13, 14, 15]])torch.Size([4, 4])
tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],        [ 8,  9, 10, 11, 12, 13, 14, 15]])torch.Size([2, 8])

当然,在看一些代码时,往往会发现view()中有参数-1。看下面几个例子​​​​​​​

复制代码
c=T1.view(-1,4,4)print(c)print(c.size())tensor([[[ 0,  1,  2,  3],         [ 4,  5,  6,  7],         [ 8,  9, 10, 11],         [12, 13, 14, 15]]])torch.Size([1, 4, 4]​​​​​​​

d=T1.view(-1,8)print(d)print(d.size())tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],        [ 8,  9, 10, 11, 12, 13, 14, 15]])torch.Size([2, 8])​​​​​​​

e=T1.view(8,-1)print(e)print(e.size())tensor([[ 0,  1],        [ 2,  3],        [ 4,  5],        [ 6,  7],        [ 8,  9],        [10, 11],        [12, 13],        [14, 15]])torch.Size([8, 2])

通过上述几个例子,view中一个参数定为-1,代表自动调整这个维度上的元素个数,同时保证元素的总个数不变当然,我们也注意到了这个细节:传入几个参数,代表结果有几个维度

对于这篇文章:张量扁平化------CNN的Flatten操作

保持batch轴不变,展平其它轴,我们采用的是flatten()方法,这里我们用view()方法。​​​​​​​

复制代码
t1=torch.rand([5,3,128,128])print(t1.size())
torch.Size([5, 3, 128, 128])​​​​​​​

t2=t1.view(5,-1)print(t2)print(t2.size())

结果符合我们的预期!

相关推荐
我是小疯子66几秒前
HybridA*算法:高效路径规划核心解析
人工智能·算法·机器学习
晨非辰1 分钟前
【数据结构入坑指南(三.1)】--《面试必看:单链表与顺序表之争,读懂“不连续”之美背后的算法思想》
数据结构·c++·人工智能·深度学习·算法·机器学习·面试
草莓熊Lotso4 分钟前
《算法闯关指南:优选算法--滑动窗口》--15.串联所有单词的子串,16.最小覆盖子串
开发语言·c++·人工智能·算法
阿里-于怀12 分钟前
Dify 官方上架 Higress 插件,轻松接入 AI 网关访问模型服务
网络·人工智能·ai·dify·higress
AI周红伟13 分钟前
周红伟:智能体构建,《企业智能体构建-DIFY+COZE+Skills+RAG和Agent能体构建案例实操》
大数据·人工智能
Faker66363aaa17 分钟前
Faster-RCNN改进一基于R50-FPG的人脸与垃圾物体检测识别_crop640-50e_COCO
python
kaizq21 分钟前
Windows下基于Python构造Dify可视应用环境[非Dock]
windows·python·dify·大语言模型llm·人工智能ai·智能体agent
!chen22 分钟前
引入AI辅助的3D游戏美术工作流
人工智能·3d·游戏美术
码农三叔26 分钟前
(2-1)常用传感器与基础原理:视觉传感器+激光雷达
人工智能·机器人·人机交互·人形机器人
heimeiyingwang32 分钟前
向量数据库在大模型 RAG 中的核心作用与实践
数据库·人工智能·微服务