逻辑回归简单案例分析--鸢尾花数据集

文章目录

    • [1. IRIS数据集介绍](#1. IRIS数据集介绍)
    • [2. 具体步骤](#2. 具体步骤)
      • [2.1 手动将数据转化为numpy矩阵](#2.1 手动将数据转化为numpy矩阵)
        • [2.1.1 从csv文件数据构建Numpy数据](#2.1.1 从csv文件数据构建Numpy数据)
        • [2.1.2 模型的搭建与训练](#2.1.2 模型的搭建与训练)
        • [2.1.3 分类器评估](#2.1.3 分类器评估)
        • [2.1.4 分类器的分类报告总结](#2.1.4 分类器的分类报告总结)
        • [2.1.5 用交叉验证(Cross Validation)来验证分类器性能](#2.1.5 用交叉验证(Cross Validation)来验证分类器性能)
        • [2.1.6 完整代码:](#2.1.6 完整代码:)
      • [2.2 使用sklearn内置的iris数据集(多分类)](#2.2 使用sklearn内置的iris数据集(多分类))
        • [2.2.1 导入数据集](#2.2.1 导入数据集)
        • [2.2.2 划分训练集和测试集](#2.2.2 划分训练集和测试集)
        • [2.2.3 定义逻辑回归模型并训练](#2.2.3 定义逻辑回归模型并训练)
        • [2.2.5 用训练好的模型在训练集和测试集上做预测](#2.2.5 用训练好的模型在训练集和测试集上做预测)
        • [2.2.6 对预测结果进行可视化](#2.2.6 对预测结果进行可视化)

1. IRIS数据集介绍

Iris也称鸢尾花卉数据集,是常用的分类实验数据集,由R.A. Fisher于1936年收集整理的。其中包含3种植物种类,分别是山鸢尾(setosa)变色鸢尾(versicolor)和维吉尼亚鸢尾(virginica),每类50个样本,共150个样本。

该数据集包含4个特征变量,1个类别变量。iris每个样本都包含了4个特征:花萼长度,花萼宽度,花瓣长度,花瓣宽度,以及1个类别变量(label)。我们需要建立一个分类器,分类器可以通过这4个特征来预测鸢尾花卉种类是属于山鸢尾,变色鸢尾还是维吉尼亚鸢尾。其中有一个类别是线性可分的,其余两个类别线性不可分,这在最后的分类结果绘制图中可观察到。

变量名 变量解释 数据类型
sepal_length 花萼长度(单位cm) numeric
sepal_width 花萼宽度(单位cm) numeric
petal_length 花瓣长度(单位cm) numeric
petal_width 花瓣长度(单位cm) categorical

2. 具体步骤

Step1:数据集预览

python 复制代码
df=pd.read_csv('./data/iris.data.csv',header=0)
print(df.head())

2.1 手动将数据转化为numpy矩阵

2.1.1 从csv文件数据构建Numpy数据

Step 1:构造映射函数iris_type。因为实际数据中,label并不都是便于学习分类的数字型,而是string类型。

Step 2:对于文本类的label, 将label列的所有内容都转变成映射函数的输出,存成新的dataframe

Step 3:将Step2的结果转换成numpy矩阵

Step 4:划分训练集与测试集

python 复制代码
def iris_type(s):
    class_label={'Iris-setosa':0,'Iris-versicolor':1,'Iris-virginica':2}
    return class_label[s]
df=pd.read_csv('./data/iris.data.csv',header=0)
#2.将第4列内容映射至iris_type函数定义的内容
df['Species']=df['Species'].apply(iris_type)
print(df.head())
#3.将df解析到numpy_arrat
data=np.array(df)
# print(data[:2])

#4.将原始数据集分为测试集合和验证集合
# 用np.split按列(axis=1)进行分割
# (4,):分割位置,前4列作为x的数据,第4列之后都是y的数据
x,y=np.split(data,(4,),axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.7,random_state=0)
2.1.2 模型的搭建与训练
  • Pipeline(steps)

    利用sklearn提供的管道机制

    Pipeline

    来实现对全部步骤的流式化封装与管理。

    • 第一个环节:可以先进行 数据标准化 StandardScaler()
    • 中间环节:可以加上 PCA降维处理 取2个重要特征
    • 最终环节:逻辑回归分类器
python 复制代码
pip_LR=Pipeline([('sc',StandardScaler()),
                 ('pca',PCA(n_components=2)),
                 ('clf_lr',LogisticRegression(random_state=1))
                 ])

#开始训练
pip_LR.fit(x_train,y_train.ravel())

#显示当前管道的配置和参数设置,它并没有直接运行或产生实际的影响,只展示了机器学习管道的配置
Pipeline(memory=None,
     steps=[('sc', StandardScaler(copy=True, with_mean=True, with_std=True)), ('pca', PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
  svd_solver='auto', tol=0.0, whiten=False)), ('clf_lr', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=1, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False))])
2.1.3 分类器评估
python 复制代码
print("训练准确率:%0.2f"%pip_LR.score(x_train,y_train))

print("测试准确率:%0.2f"%pip_LR.score(x_test,y_test))

y_hat=pip_LR.predict(x_test)
accuracy=metrics.accuracy_score(y_test,y_hat)
print("逻辑回归分类器的准确率:%0.2f" % accuracy)
2.1.4 分类器的分类报告总结
  • 精确度(Precision):指的是在所有模型预测为某一类别的样本中,真正属于该类别的比例。计算方式为该类别的 True Positives / (True Positives + False Positives)。
  • 召回率(Recall):指的是在所有实际属于某一类别的样本中,被模型正确预测为该类别的比例。计算方式为该类别的 True Positives / (True Positives + False Negatives)
  • F1 Score:是精确度和召回率的调和平均数,综合考虑了两者的性能。计算方式为 2 ∗ P r e c s i o n ∗ R e c a l l P r e c i s i o n + R e c a l l 2*\frac{Precsion*Recall}{Precision+Recall} 2∗Precision+RecallPrecsion∗Recall
  • support:指的是属于该类别的样本数。
  • accuracy(准确度):指的是模型在所有类别上正确预测的比例。计算方式为 Sum of True PositivesTotal SamplesTotal SamplesSum of True Positives。
  • macro avg(宏平均):对所有类别的指标取平均,不考虑类别样本数量的差异。
  • weighted avg(加权平均):对所有类别的指标取加权平均,考虑类别样本数量的差异。
python 复制代码
#描述分类器的精确度,召回率,F1Score
target_names=['Iris-setosa','Iris-versicolor','Iris-virginica']
print(metrics.classification_report(y_test,y_hat,target_names=target_names))
2.1.5 用交叉验证(Cross Validation)来验证分类器性能

交叉验证常用于防止模型过于复杂而造成过拟合,同时也称为循环估计。基本思想是将原始数据分成K组(一般是平均分组),每个子集数据分别做一次验证集或测试集,其余的K-1个子集作为训练集。这样就会得到K个模型,取这K个模型的分类准确率的平均数作为分类器的性能指标更具说服力。

比如说在这里我们使用的是5折交叉验证(5-fold cross validation),即数据集被分成了5份,轮流将其中4份作为训练数据集,剩余1份作为测试集,进行试验。每次试验都会得出相应的正确率,将5次试验得出的相应正确率的平均值作为分类器的准确率的估计。同样的,K也可以取10,20等。

python 复制代码
iris_data=x
iris_target=y
scores=cross_val_score(pip_LR,iris_data,iris_target.ravel(),cv=5,scoring='f1_macro')
print("5折交叉验证:\n逻辑回归分类器的准确率:%.2f 误差范围:(+/- %.2f)"%(scores.mean(), scores.std()*2))
X_trainval, X_test, y_trainval, y_test = train_test_split(
    iris_data, iris_target, random_state=0)
X_train, X_val, y_train, y_val = train_test_split(
    X_trainval, y_trainval, random_state=1)
print("训练集大小:{} 验证集大小:{} 测试集大小:{}".format(
        X_train.shape[0],
        X_val.shape[0],
        X_test.shape[0]))
2.1.6 完整代码:
python 复制代码
#将原始数据文件转为机器学习可用的numpy数据
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import chart_studio.grid_objs as go
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV


def iris_type(s):
    class_label={'Iris-setosa':0,'Iris-versicolor':1,'Iris-virginica':2}
    return class_label[s]
df=pd.read_csv('./data/iris.data.csv',header=0)
#2.将第4列内容映射至iris_type函数定义的内容
df['Species']=df['Species'].apply(iris_type)
print(df.head())
#3.将df解析到numpy_arrat
data=np.array(df)
# print(data[:2])

#4.将原始数据集分为测试集合和验证集合
# 用np.split按列(axis=1)进行分割
# (4,):分割位置,前4列作为x的数据,第4列之后都是y的数据
x,y=np.split(data,(4,),axis=1)
# X = x[:,0:2] # 取前两列特征
# 用train_test_split将数据按照7:3的比例分割训练集与测试集,
# 随机种子设为1(每次得到一样的随机数),设为0或不设(每次随机数都不同)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.7,random_state=0)
pip_LR=Pipeline([('sc',StandardScaler()),
                 ('pca',PCA(n_components=2)),
                 ('clf_lr',LogisticRegression(random_state=1))
                 ])

#开始训练
pip_LR.fit(x_train,y_train.ravel())

#显示当前管道的配置和参数设置,它并没有直接运行或产生实际的影响,只展示了机器学习管道的配置
Pipeline(memory=None,
     steps=[('sc', StandardScaler(copy=True, with_mean=True, with_std=True)), ('pca', PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
  svd_solver='auto', tol=0.0, whiten=False)), ('clf_lr', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=1, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False))])
print("训练准确率:%0.2f"%pip_LR.score(x_train,y_train))
print("测试准确率:%0.2f"%pip_LR.score(x_test,y_test))
y_hat=pip_LR.predict(x_test)
accuracy=metrics.accuracy_score(y_test,y_hat)
print("逻辑回归分类器的准确率:%0.2f" % accuracy)

#描述分类器的精确度,召回率,F1Score
target_names=['Iris-setosa','Iris-versicolor','Iris-virginica']
print(metrics.classification_report(y_test,y_hat,target_names=target_names))

#交叉验证(Cross Validation)来验证分类器的性能
iris_data=x
iris_target=y
scores=cross_val_score(pip_LR,iris_data,iris_target.ravel(),cv=5,scoring='f1_macro')
print("5折交叉验证:\n逻辑回归分类器的准确率:%.2f 误差范围:(+/- %.2f)"%(scores.mean(), scores.std()*2))
X_trainval, X_test, y_trainval, y_test = train_test_split(
    iris_data, iris_target, random_state=0)
X_train, X_val, y_train, y_val = train_test_split(
    X_trainval, y_trainval, random_state=1)
print("训练集大小:{} 验证集大小:{} 测试集大小:{}".format(
        X_train.shape[0],
        X_val.shape[0],
        X_test.shape[0]))

网格搜索验证见:用逻辑回归实现鸢尾花数据集分类(2) - Heywhale.com

2.2 使用sklearn内置的iris数据集(多分类)

2.2.1 导入数据集
python 复制代码
#导入内置数据集,已经处理空置,无需进行预处理
iris = load_iris()

print('数据集的前5个样例', iris.data[0:5])
2.2.2 划分训练集和测试集
python 复制代码
y = iris.target
X = iris.data
X_train, X_test, Y_train, Y_test = train_test_split(X, y, train_size=0.8, random_state=2020)
2.2.3 定义逻辑回归模型并训练
python 复制代码
logistic = LogisticRegression(random_state=0,solver='lbfgs')
logistic.fit(X_train, Y_train)
print('the weight of Logistic Regression:\n',logistic.coef_)
print('the intercept(w0) of Logistic Regression:\n',logistic.intercept_)
y_train_predict=logistic.predict(X_train)
y_test_predict = logistic.predict(X_test)

可以看到此处打印出了三组参数,这是因为这里我们是三分类问题。

2.2.5 用训练好的模型在训练集和测试集上做预测
python 复制代码
#由于逻辑回归模型是概率预测模型,所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = logistic.predict_proba(X_train)
test_predict_proba = logistic.predict_proba(X_test)
print('The test predict Probability of each class:\n',test_predict_proba)

# 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(Y_train,y_train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(Y_test,y_test_predict))

confusion_matrix_result = metrics.confusion_matrix(y_test_predict,Y_test)
print('The confusion matrix result:\n',confusion_matrix_result)
2.2.6 对预测结果进行可视化
python 复制代码
confusion_matrix_result = metrics.confusion_matrix(y_test_predict,Y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

通过结果我们可以发现,其在三分类的结果其在测试集上的准确度为: 86.67% ,这是由于'versicolor'(1)和 'virginica'(2)这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界),所有在这两类的预测上出现了一定的错误。

从混淆矩阵中可以看出:标签值y=0的10个样本都被正确分类;标签值y=1的10个样本中,有8个被正确分类,其中有两个被误分类为y=2;标签值y=2的10个样本中,有8个被正确分类,其中有两个被误分类为y=1。

相关推荐
爱吃生蚝的于勒1 小时前
C语言内存函数
c语言·开发语言·数据结构·c++·学习·算法
ChoSeitaku7 小时前
链表循环及差集相关算法题|判断循环双链表是否对称|两循环单链表合并成循环链表|使双向循环链表有序|单循环链表改双向循环链表|两链表的差集(C)
c语言·算法·链表
Fuxiao___7 小时前
不使用递归的决策树生成算法
算法
我爱工作&工作love我7 小时前
1435:【例题3】曲线 一本通 代替三分
c++·算法
秀儿还能再秀7 小时前
机器学习——简单线性回归、逻辑回归
笔记·python·学习·机器学习
学术搬运工7 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
白-胖-子8 小时前
【蓝桥等考C++真题】蓝桥杯等级考试C++组第13级L13真题原题(含答案)-统计数字
开发语言·c++·算法·蓝桥杯·等考·13级
workflower8 小时前
数据结构练习题和答案
数据结构·算法·链表·线性回归
好睡凯8 小时前
c++写一个死锁并且自己解锁
开发语言·c++·算法
Sunyanhui18 小时前
力扣 二叉树的直径-543
算法·leetcode·职场和发展