java中如何实现本地缓存?

在高性能服务架构设计中,缓存是不可或缺的环节。在实际项目中,我们通常会将一些热点数据存储在Redis或Memcached等缓存中间件中,只有在缓存访问未命中时才查询数据库。

在提高访问速度的同时,还可以减轻数据库的压力。

为什么要使用本地缓存?

随着不断的发展,这个架构也得到了完善。在某些场景下,仅仅使用Redis类的远程缓存可能还不够。需要进一步与本地缓存配合使用,比如Guava或者Caffeine,从而再次提高程序的响应速度和服务性能。

由此,形成了以本地缓存作为一级缓存、远程缓存作为二级缓存的二级缓存架构。

总结:

  1. 本地缓存基于本地环境的内存,访问速度非常快。对于一些变化频率不高、实时性要求不高的数据,可以放在本地缓存中,以提高访问速度。
  2. 使用本地缓存可以减少与Redis类的远程缓存的数据交互,减少网络I/O开销,减少这个过程中网络通信的耗时。

本地存储的基本功能

  • 它可以存储、读取和写入。
  • 原子操作(线程安全),例如ConcurrentHashMap。
  • 可以设置缓存的最大限制。
  • 超过最大限制有相应的淘汰策略,如LRU、LFU。
  • 统计监控。

方案选择

1.使用ConcurrentHashMap。

缓存的本质是KV存储在内存中的数据结构,对应JDK中的线程安全ConcurrentHashMap,但是要实现缓存,需要考虑消除、最大限制、消除缓存过期时间等功能。

优点ConcurrentHashMap是实现简单,不需要引入第三方包,所以比较适合一些简单的业务场景。

缺点是如果需要更多的功能,需要定制开发,成本会比较高,稳定性和可靠性难以保证。

对于更复杂的场景,建议使用相对稳定的开源工具。

2. 使用Guava缓存

Guava是Google团队开源的一个Java核心增强库。它包括集合、并发原语、缓存、IO、反射和其他工具箱。性能和稳定性有保证,应用广泛。

  • Guava Cache 支持许多功能:
  • 支持最大容量限制。
  • 支持两种过期删除策略。
  • 支持简单的统计功能。 它是基于LRU算法实现的。

示例代码如下

xml 复制代码
 <dependency><dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>31.1-jre</version>
</dependency>
typescript 复制代码
@Slf4j
public class GuavaCacheTest {
    public static void main(String[] args) throws ExecutionException {
        Cache<String, String> cache = CacheBuilder.newBuilder()
                .initialCapacity(5)  // 初始容量
                .maximumSize(10)   // 缓存的最大数量,超过该数量将被淘汰
                .expireAfterWrite(60, TimeUnit.SECONDS) // 过期时间
                .build();

        String orderId = String.valueOf(123456789);
        String orderInfo = cache.get(orderId, () -> getInfo(orderId));
        log.info("orderInfo = {}", orderInfo);

    }

    private static String getInfo(String orderId) {
        String info = "";
        // 首先查redis
        log.info("get data from redis");
        // redis不存在 查db
        log.info("get data from mysql");
        info = String.format("{orderId=%s}", orderId);
        return info;
    }
}

3. 使用Encache

Encache是​一个纯Java进程内缓存框架,快速且精简。它是 Hibernate 中默认的 CacheProvider。 与Caffeine和Guava Cache相比,Encache功能更丰富,可扩展性更强。 支持LRU、LFU、FIFO等多种缓存淘汰算法。

缓存支持三种类型:堆内存储、堆外存储、磁盘存储(支持持久化)。

支持多种集群方案,解决数据共享问题。

使用方法如下:

xml 复制代码
 <dependency><dependency>
    <groupId>org.ehcache</groupId>
    <artifactId>ehcache</artifactId>
    <version>3.9.7</version>
</dependency>
arduino 复制代码
@Slf4j
public class EhcacheTest {
    private static final String ORDER_CACHE = "orderCache";
    public static void main(String[] args) {
        CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
                // 创建实例
                .withCache(ORDER_CACHE, CacheConfigurationBuilder
              // 声明一个容量为20的堆内缓存
                        .newCacheConfigurationBuilder(String.class, String.class, ResourcePoolsBuilder.heap(20)))
                .build(true);
        // 得到缓存实例
        Cache<String, String> cache = cacheManager.getCache(ORDER_CACHE, String.class, String.class);

        String orderId = String.valueOf(123456789);
        String orderInfo = cache.get(orderId);
        if (StrUtil.isBlank(orderInfo)) {
            orderInfo = getInfo(orderId);
            cache.put(orderId, orderInfo);
        }
        log.info("orderInfo = {}", orderInfo);
    }

    private static String getInfo(String orderId) {
        String info = "";
        // 首先从redis查
        log.info("get data from redis");
        // 不存在 查db
        log.info("get data from mysql");
        info = String.format("{orderId=%s}", orderId);
        return info;
    }
}

本地缓存常见问题

1. 缓存一致性。

二级缓存和数据库中的数据必须一致。一旦数据被修改,本地缓存和远程缓存应在数据库修改的同时同步更新。

解决方案1:使用MQ。

目前的部署一般都是集群部署,不同节点有多个本地缓存。 可以利用MQ的广播模式,在数据修改时向MQ发送消息,由节点监听并消费该消息,删除本地缓存,达到最终一致性。

解决方案二:Canal+MQ。

如果你的业务代码中不想发送MQ消息,也可以应用近年来比较流行的方法:订阅数据库变更日志,然后操作缓存。 Canal订阅Mysql的Binlog日志,当发生变化时向MQ发送消息,从而也实现了数据的一致性。

2.如何提高缓存命中率?

  • 根据业务场景设计合理的时效性。

缓存适用于读多写少的场景,尽可能关注访问频率高、时效性要求不高的热点业务。 访问频率越高,点击率越高。 时效性越低,缓存时间越长,相同key、相同请求数下命中率越高。

  • 设计合理的缓存粒度。

缓存的粒度越小,缓存命中率越高。 单个key缓存的数据单元越小,被改变的可能性就越小。

  • 设计合理的缓存过期策略。

这里的缓存过期策略并不是redis内置的定期删除和惰性删除策略,而是根据业务场景优化了key的过期时间。 例如,如果用户的关键信息同时过期,那么当多个用户同时查询时,都会落入数据库,也就是说避免缓存同时失效。

  • 合理的缓存预加载。

redis缓存必须从数据库加载,所以当第一次使用数据时,redis需要从数据库加载数据。 我们可以在用户访问之前将需要的数据提前加载到缓存中,这样用户第一次访问时就可以直接去缓存而不用去查询数据库。

  • 防止缓存崩溃和击穿。

缓存击穿和崩溃也会影响缓存命中率。当然,如果发生的话,应用失败的可能性很大。

  • 设计合理的缓存容量。

注意缓存容量,如果太小,会触发redis内存淘汰机制。线上redis一般配置maxmemory-policy allkeys-lru算法进行内存消除。

这样就会删除一些key,造成缓存穿透,从而降低缓存命中率,所以需要合理配置缓存容量。

如果喜欢这篇文章,点赞支持一下,微信搜索:京城小人物,关注我第一时间查看更多内容!感谢支持!

相关推荐
HBryce242 分钟前
缓存-基础概念
java·缓存
一只爱打拳的程序猿17 分钟前
【Spring】更加简单的将对象存入Spring中并使用
java·后端·spring
杨荧19 分钟前
【JAVA毕业设计】基于Vue和SpringBoot的服装商城系统学科竞赛管理系统
java·开发语言·vue.js·spring boot·spring cloud·java-ee·kafka
minDuck21 分钟前
ruoyi-vue集成tianai-captcha验证码
java·前端·vue.js
为将者,自当识天晓地。39 分钟前
c++多线程
java·开发语言
daqinzl1 小时前
java获取机器ip、mac
java·mac·ip
激流丶1 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic
Themberfue1 小时前
Java多线程详解⑤(全程干货!!!)线程安全问题 || 锁 || synchronized
java·开发语言·线程·多线程·synchronized·
让学习成为一种生活方式1 小时前
R包下载太慢安装中止的解决策略-R语言003
java·数据库·r语言
晨曦_子画1 小时前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin